многолетних насаждений
При разработке такой сложной проблемы, какой является оптимизация управления механизированными технологиями многолетних насаждений в процессе их функционирования, возникает необходимость видеть одновременно и проблему целиком, и связи между её частями, и отдельные её части. Всё это рассматривать в зависимости от закономерностей среды, развития культур и обрабатывающей их техники.
Механизм решения поставленной задачи соответствует «поня-тийно - образно - практической» структуре (Г.Альтшуллер, 1973, М.Зиновкина, 1996). В данном случае решение сводилось к системному анализу развития с последующей доработкой принятых в производстве вариантов технологий многолетних культур.
Закономерность формообразования этих вариантов развития определялась морфологическим анализом функциональных отличий стыка между параметрами насаждений (табл. 1), в том числе и формообразования растений в насаждениях (табл. 3), и параметрами средств ухода за ними, на фоне мировой градации поколений техники (НТР.ВО «Знание» / Бюл. - № 20, 1986 г.) и почвенно - климатических особенностей Северо - Кавказского региона России в разрезе отрицательных факторов воздействия технологий на параметры среды и среды на параметры технологий [16, 19, 23, 24, 25, 69, 92, 96, 104, 120].
Видение проблемы в целом, связей между её частями и отдельных её частей осуществлялось специально разработанным для этого методологическим подходом, отправным моментом которого являет- ся доказательство достаточности массива информации о проблеме [43, 70, 73, 81, 82, 86, 88, 89, 91, 95, 98].
Анализ информации морфологической матрицы (табл. 1) показал, что на данном этапе развития многолетних культур существует, с позиции теории систем, два технологических «организма» и , имеющих собственные цели. Первый и конструктивно и функционально «застыл» на втором уровне мировой градации поколений техники ( и ). Его средства ухода ограничиваются моторизацией инвентаря с ручным управлением. Его самоцель - заставить рабочий объём насаждения максимально давать продукт. Поэтому он является основой ведения дачных, приусадебных и других куртинных насаждений. Второй, в отличие от первого «организма», развивающийся. Его цель - максимальная замена ручного труда машинным. Ему осталось в управлении системой применить гибкое программирование с адаптацией и внутренней диагностикой системы, тогда он полностью перейдёт на пятый уровень мировой градации поколений техники. В нём противоречие отбора рабочего объёма насаждения на технологические коридоры [98] решается переходом средств ухода на мостовые системы по схеме и [82, 124]. В «организме» заложена не только собственная цель, но и возможные пути развития её «организма» в направлении , или , или , или , или , или .
Из этого следует, что каждое последующее функциональное отличие технологии предыдущему функциональному отличию является альтернативным ( альтернатива для и т. д.), поэтому вектор развития архитектоники многолетних насаждений явно движется от к . Кульминацией этого развития станет блочно - пропашное исполнение «организма» (см. табл. 2).
Чисто пропашное исполнение «организма» бесперспективно для садоводства
по причине сло-жности транспортировки урожая с участка. Рационально его использовать в питомниководстве с модернизацией трактора МТЗ-80/82 и
При четырёхразовой ротации насаждений.
культиватора КРН-5,6 [124]. Применение «организма» , с использованием по схеме , при появлении стало не рациональным [34, 35, 48, 54, 56, 70, 71, 72, 85, 90, 93, 117, 119, 120].
Таким образом, многолетние насаждения с технологическими коридорами являются самоорганизующейся системой, каждый вариант которой имеет сугубо свои цели, поэтому на ближайшее обозримое будущее варианты , или , или , или этой технологии правомочны. В них параметры технологического коридора останутся стабильными как минимум до 2010 года, (на период пятого поколения техники ширина коридора будет в пределах 2 ... 2,5 м.), в то время как архитектоника растения будет продолжать совершенствоваться [11, 26, 31, 32, 38, 43, 48, 56, 60, 65, 67, 73, 75, 81, 82, 83, 93, 94, 98, 111, 112, 113, 115, 116, 123, 125]. А это значит, что заданная стратегия развития отличительной функции архитектоники многолетних насаждений, «опирающаяся на поведенческие стере-отипы» (Н.Н.Моисеев, 1996) этой функции, ещё не только не исчерпала себя, но и находится на подъёме. Подъём её идёт явно по двум
Таблица 3
Морфологическая матрица вариантов исполнения
основных функций архитектоники многолетних растений
направлениям: уменьшением количества технологических коридоров и параметров растений. Но эти направления для и антагонистичны, так как с уменьшением параметров растений уменьша-
ется ширина междурядья, что увеличивает её долю в параметре коридора с 25% на СКС до 50% на карликовых подвоях М9, а это и недобор урожая с площади, и увеличение антропогенного влияния агрегатов на почву более частыми проходами на этой площади. Поэтому варианты и наиболее перспективны [98]. При этом следует ожидать, что из вариантов , и будут синтезированы садовые [98] и виноградниковые (В.П.Бондарев, 1989) оптимальные конструкции крон отдельных растений или рядов [93] для блока варианта . Путь этого синтеза чётко прослеживается с помощью формализации кроны многолетнего растения в виде четырёхмерного пространства, которая показывает направления совершенствования архитектоники кроны, а следовательно и насаждения. Для этого были использованы понятия науки проектирования и конструирования «носителей функций» (Я.Дитрих, 1981), информация о которых представлена в табл. 3 и на рис. 1.
Рис. 1. Модульное с) нарастание дерева а) и куста в);
- апикально, по порядкам ветвления ;
- латерально, по порядкам утолщения
Анализ данных таблицы 3 показал, что, с позиции теории систем, вся гамма форм архитектоники многолетнего растения строится на трёх основных иерархически подчинённых функциях: ствола, скелета и периферии кроны. Каждая из этих функций отдельный организм, имеющий сугубо свою цель, но закономерность построения этих организмов однотипна - обязательная соподчиненность последующих порядков предыдущим, «с размещением в пространстве таким образом, чтобы занять в нём минимальный объём» (Ф.Патури, 1979). По положению в пространстве нарастание тела растения происходит апикально (верхушек побегов 1, 2, 3 и т.д. в длину) и латерально (вторичное утолщение уже выросших органов растения и т.д.) по схеме, приведённой на рис. 1.
Согласно рис.1, многолетнее растение, - безразлично, дерево ) или куст ), - в процессе нового цикла роста «одевает» выросшее за предыдущие циклы роста тело растения латерально, одновременно осуществляя на этом слое «одежды» апикальный рост новых органов кроны, используя идентичные строительные модули ) архитектоники кроны с побегами апикального роста. При этом, согласно законам
механики, растение, как живой организм, реагирует на действие сил,
приложенных к нему и, согласно биологическим законам, также реагирует на них изменением строения своего тела и его частей.
Наши исследования архитектоники укрывных и неукрывных виноградных кустов с различными шпалерными системами подтвердили эту схему построения. Куст представляет собой сообщество двух типичных конструкций: одной - соответствующей форме опоры (субъективной), а другой - видовой (объективной). Первая в виде балки - удлинителя равного сечения выполняет роль проводника, а вторая - постоянно наращиваемой плодообразующей древесины, представляющей собой балку равного сопротивления.
Более полно свойства архитектоники кроны изложены в публикациях [23, 31, 38, 60, 67].
Анализ полученной информации [65] показал, что структурно это построение отображается тремя принципами: согласованностью, повторяемостью и целесообразностью.
По принципу согласованности определялся [73, 80, 81, 89, 94, 111, 113, 125] уровень оптимизации стыка системы машина - растение при постоянном изменении архитектоники крон. Так как стык, прежде всего, осуществляется через внешние параметры основных функций архитектоники растения по коридору или над растениями , то одним из возможных путей достижения оптимальности является формирование кроны в нужном направлении без побуждения её израстания, но вызовом в первую очередь закладки системы структурного и функционального объединения тех органов растения, которые должны в необходимом количестве развиваться в слое плодообразующей древесины. Эта согласованность обусловлена наследственно закреплёнными параметрами кроны сортоподвойной комбинации, отображённой на проекции в плане кругом, периметр площади которого является определяющим параметром при расчёте ширины междурядья. Следовательно, влиять на параметр ширины междурядья возможно внешними факторами, например, деформацией круга в эллипс в пределах этого параметра. Таким образом, соблюдая закон золотого сечения 21 / 34 (Ф.Патури, 1979), параметр проекции кроны может быть сдеформирован вдоль ряда до 1,2 её естественного диаметра d и до 0,74 того же диаметра со стороны междурядий. Тогда, за счёт параметра 0,74d уменьшается ширина междурядья, а за счёт 1,2d увеличится шаг посадки растений в ряду.
По принципу повторяемости определялась [23, 26, 31, 32, 38, 43, 65, 67, 75, 98] идентичность составляющих системы машина - растение через скалярность скелетов растений в ряду (квартале). Благодаря этой скалярности насаждение ведётся подобными компонентами системы структурного и функционального объединения органов архитектоники растения (например, лопастирование), используя «организм» . . Такая «инвариантность в подобии» указывает на возможность применения автоматических систем в частях и этого «организма» [56, 112]. Математически подобная скалярность выражается как фрактальная система формулой Мандельброта [43],
, (1)
где - количество одинаковых компонентов системы структурного и функционального объединения органов архитектоники растения в разрезе каждой её основной функции;
- масштаб в разрезе иерархии ( и т.д.) каждой основной функции;
- порядок ветвления.
В формуле (1) изменяется по мере нарастания объёма кроны, а количество ветвлений в модуле «с» зависит от их целесообразности, которая определяется из табл. 4 и рис. 2, где увеличение в скелете коли-чества компонентов первого порядка ветвления ведёт к потере темпа набора объёма кроны. Лучшими являются двухкомпонентное ветвление ранга (вариант I) и двенадцатикомпонентное ветвление в плодообразующем слое древесины ранга (варианты I и II) [125].
Рис. 2. Закономерность набора объёма кроны
в зависимости от интенсивности её ветвления
Наращивание остальных порядков ветвления не имеет смысла, так как темп увеличения объёма кроны асимптотически приближается к масштабу , который следует считать нижним критерием ветвления, так как при остаётся только побег продолжения, а при растение превращается в плеть (ствол). В настоящее время используется в насаждениях короткого цикла, например, садах - питомниках [93] и петлеобразном кордоне виноградного куста [113].
Таблица 4
Морфологическая матрица
данных членов формулы Мандельброта (1)
Иерар-хия ран-гов вет- | Варианты ветвления по рангам | |||||||||
вления | I | II | III | IV | ||||||
Коли-чество | Коли-чество | Коли-чество | Коли-чество | |||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | |||
2 | 0,5 | 3 | 0,33 | 4 | 0,25 | 5 | 0,2 | |||
6 | 0,408 | 6 | 0,408 | 8 | 0,353 | 12 | 0,437 | |||
12 | 0,437 | 12 | 0,437 | 16 | 0,397 | 24 | 0,451 | |||
24 | 0,451 | 24 | 0,451 | 32 | 0,421 | 48 | 0,461 | |||
48 | 0,461 | 48 | 0,461 | 64 | 0,435 | 96 | 0,468 | |||
96 | 0,468 | 96 | 0,468 | 128 | 0,444 | 192 | 0,473 | |||
192 | 0,473 | 192 | 0,473 | 256 | 0,468 | 384 | 0,476 | |||
Развитием работ [93 и 113] нами установлено, что крона многолетнего растения строится посредством модуля «с» темпоральными слоями (рис. 1), поэтому возможна её формализация в виде четырёхмерного пространства Генриха Минковского (рис. 3).
Согласно рис. 3, координаты и время реализуются в своих главных чертах - вдоль ряда « » и его поперечном сечении « », « ». С математической точки зрения они равноправны, так как прошедшее, настоящее и будущее этих компонентов кроны запрограммировано генетически в пределах статической концепции
Рис. 3. Формализованный вид кроны многолетнего растения
через пространственные координаты и время
времени (по Козыреву), поэтому может быть для каждого варианта табл. 4 отображено моделью
(2)
где , , - количество ветвлений по рангам ;
- объём темпорального слоя .
При асимптотическом приближении к нижнему критерию ветвления (рис. 2), последующие за третьим членом модели (2) по своему объёму будут близки третьему члену, поэтому он может быть отображён в модели (2) в периоде.
Создавая почвообрабатывающие комплексы для садоводства, виноградарства и питомниководства, мы установили идентичность влияния на почву в этих насаждениях факторов природного и антропогенного происхождения. В качестве природного фактора - водная эрозия, а антропогенного - утяжеление почвы техникой, что ускоряет процесс слитогенеза в землепользовании и, в конечном итоге, способствует переувлажнению земель за счёт потери почвой естественной дренированности. Установлено, что способы возделывания многолетних насаждений влияют на дренированность почвы в междурядьях из за однообразия механических воздействий на неё в течении всей жизни насаждения [16, 23, 25, 28, 69, 92]. Различия в толщине слоёв одной массы до возделывания и после доходят до 0,1 м за вегетацию. К концу периода вегетации уплотнение машинами верхних 0,4 м рыхлого выщелоченного чернозёма Прикубанья уменьшает толщу у этого слоя по следу трактора на 25 %, а проходы почвообрабатывающих машин - не менее, чем на 10 %. В слое 0,00 ... 0,39 м на виноградниках в конце вегетационного периода можно встретиться с тремя типами распределения плотности почв - равномерное по всей толщине слоя в ряду, более плотное сверху в колее трактора и более плотное внизу в центре междурядья - «плужная подошва».
Эти данные подтверждены структурным анализом образцов приёмом деинтеграции (Г.Н.Теренько, С.Ф.Неговелов, В.А.Бондарев, 1979). В большинстве образцов выход агрономически ценной структуры превышал 80 % от их массы. На этом фоне резко выделялись образцы, взятые в колее. Даже интенсивная деинтеграция не смогла разрушить созданных трактором глыб; структура не только сжата и деформирована, но кое где полностью нарушены её прежние границы. Поэтому не только осталось больше глыб, но и сама агрономически ценная структура отличается по характеру от верхнего слоя в ряду, где преобладает более мелкая структура, размером от 3 до 0,25 мм, её доля в агрономически ценной структуре 63 2,8% при коэффициенте варьирования 10,8%. В колее, наоборот, преобладают более крупные фракции 3 ... 7 мм, которые составляют 69 4,9% при коэффициенте варьирования 17,5%. Интерпретируя полученные результаты исследования и увязав их с информацией использования почвы однолетними посевами, мы сделали вывод [99], что уплотнение пахотного и особенно подпахотного слоя вносит глубокие изменения в водный режим преобладающих на юге тяжелосуглинистых и глинистых структурных чернозёмов. При насыщении влагой уплотнённых слоёв следует ожидать ухудшения аэрации корнеобитаемого слоя, где водоудерживающие капилляры сильно сжаты, а это может в более глубоких неуплотнённых слоях сильно понизить полезную влажность. Опыты с внутрипочвенными бороздователями [121] показали, что запасы продуктивной влаги в корнеобитаемом слое сада снижаются от этого почти вдвое. Вода, просачиваясь сквозь узкие капилляры уплотнённого слоя, заполняет такие же тонкие капилляры более глубоких слоёв, а более широкие, которые в нормальной по плотности верхних слоёв почвы заполнялись водой, остаются пустыми. Кроме того, на склонах уплотнение ведёт к прямым потерям влаги. Водопроницаемость почвы понижена и сток во время дождя увеличивается, образуя в междурядьях мочажины [33]. Это и прямая потеря влаги для урожая текущего года и усиление эрозии почвы, то есть потенциальная потеря урожая последующих лет.
С позиции физики процесса, приобретение почвой плотности во время потери влаги следует квалифицировать, как процесс становления пласта до появления эффекта «каркаса». Принимая во внимание тот факт, что между механическим составом, влажностью и способностью почвы к уплотнению существует определённая связь, а утяжеление почвы в зарегулированных междурядьях зависит от времени года[23], в «каркас» твёрдой фазы будут упаковываться механическим путём разбухшие коллоидные частицы, которые покажут достижение эффекта «каркаса» ещё на не высохшей почве, поэтому в раннем периоде вегетации эффект «каркаса» будет кажущимся (неустойчивым). Это подтверждается исследованиями утяжеления почвы в междурядьях виноградников Краснодарского края в 1962 ... 1980 г.г. [69], (табл. 5) .
Таблица 5
Динамика коэффициента утяжеления почвы ( )
в междурядьях виноградника
Сроки | Среднее по | Элементы междурядья | ||
наблюдения | междурядью | ряд | колея | междурядье |
май | 0,99 | 1,00 | 1,15 | 0,83 |
июнь | 1,17 | 1,03 | 1,50 | 0,98 |
июль | 2,31 | 2,06 | 2,63 | 2,23 |
октябрь | 2,23 | 1,87 | 2,45 | 2,38 |
ноябрь | 1,11 | 1,19 | 1,08 | 1,05 |
Из табл. 5 следует, что кажущийся «каркас» возможен до июля. С июля по октябрь он будет уже истинным и имеющим наибольшую несущую способность. Эта способность приобретается почвой за счёт воздействия на неё двух факторов: природного, вызванного диффузией влаги в системе «почва - атмосфера - почва» (внутренний деформатор) и антропогенного, вызванного воздействием средств ухода (внешний деформатор). Из - за различной интенсивности испарения влаги из почвы влияние природного деформатора переменно, в то время как антропогенный деформатор, состоящий из одного и того же энергетического средства, воздействует на пласт одной и той же массой. То есть приобретение почвой несущей способности в междурядьях многолетних насаждений не стационарно из - за природного фактора - влажности.
К концу лета влажность почвы в пахотном горизонте всего междурядья уменьшается в 1,5 ... 2 раза [69]. К этому времени явно проявляется особенность «всплытия» твёрдости почвы, в результате чего до глубины 0,1 ... 0,15 м пахотный горизонт превращается в монолит, обладающий максимальной несущей способностью, но, в силу усадо-чных явлений, он разрывается на крупные отдельности, образуя трещины глубиной до 1 м. и более. При этом почва в горизонте 0 ...0,1 м. на 10 ... 15 % влажнее горизонта 0,1 ... 0,2 м. и на 20 ...25 %, чем в горизонте 0,2 ... 0,3 м. То есть, несмотря на вертикальные трещины, в монолитах сохраняется «подошва», образованная проходами стрельчатых лап, которая способствует зависанию осадков и капиллярному подтягиванию влаги нижних слоёв. Наличие «подошвы» в монолитах доказано графическим отображением информации табл. 5 (рис. 4).
Рис. 4. Динамика коэффициента утяжеления почвы за
вегетацию в ряду ( ), в колее ( )
и междурядьи ( )
Из рис. 4 следует, что в междурядье процесс утяжеления почвы продолжается до октября (отрезок ) за счёт отдачи влаги в атмосферу через капилляры «подошвы».
Нами установлено, что абсолютная величина твёрдости почвы в междурядьях многолетних культур Северного Кавказа по годам варьирует в сильной степени, но её относительные показатели между полосами (в ряду, колее и вне колеи междурядья) более или менее стабильны, поэтому они могут быть определены отношением средней твёрдости почвы пахотного горизонта в различное время вегетации и в различных полосах междурядья к величине твёрдости почвы начала вегетации в ряду [69].
Так как структурные схемы посадок садов и виноградников по параметрам междурядий и рядов аналогичны, а принципы уходных работ идентичны (табл. 1), то приведённое состояние обрабатываемого слоя почвы является общим для всех многолетних насаждений Северного Кавказа. В связи со стремлением в архитектонике насаждений к уменьшению ширины междурядий, то полосный структурный характер утяжеления почвы в междурядьях может быть отображён изолиниями твёрдости, части которых изменяются по законам тригонометрических функций [23].
,
где и ;
- максимальная амплитуда изолиний в первом и третьем полупериодах, м;
- период изолинии, равный ширине колеи трактора, м;
- ширина междурядья, м.
Установлено [16, 23, 25, 28, 69, 82, 92, 99], что среда порождает ограничения почвенным параметрам многолетних насаждений природными температурными факторами климата. Влажность и перемещение воздушных масс являются при этом усиливающими факторами течения его годичного цикла. Для равнинной части Кубани в усреднённом виде за последний столетний период эти факторы отображены на циклограмме (рис. 5)
Рис.5. Природное течение годичного цикла температур
воздуха равнинной части Кубани:
1 - годичный ход средних температур;
2 - нижнее отклонение средних температур;
3 - максимумы температурного возмущения климата;
4 - смена прямого природного течения годичного цикла температур на обратный.
Важным в установлении (рис. 5) является то, что начало осенних ( ) и конец весенних ( ) заморозков делят климат центральной части на две равные угловые апертуры. Максимумы температурных возмущений климата района летом и зимой принадлежат одному и тому же вектору циклограммы , проходящему через конец второй декады июля ( ) и января ( ). В летнюю пору максимум связан с интенсивным трещинообразованием в почве, а в зимнюю - во время смены природного течения температуры (кривая 3) на обратный (кривая 4) - связан с оживлением компонентов системы не ко времени, в результате чего растения попадают в неблагоприятные условия среды не потому, что они в корне изменились, а потому, что потеплением спровоцирован параметр устойчивости компоненты.
С этими двумя явлениями в механизированных технологиях многолетних насаждений следует считаться: для почвы находить соответствующую технологию ухода, а для насаждений - растения с соответствующей устойчивостью [94] или технологию их защиты от экстремальных условий среды [19, 24, 25, 28, 29, 38, 68, 112]. К остальному течению годичного цикла температур воздуха следует приспосабливать технологию ухода за насаждением. Особенно это относится к угловой апертуре апреля, так как параметры характера его погоды чем севернее, тем устойчивее [23].
3. Разработка методологии оптимизации управления
Дата: 2019-07-31, просмотров: 225.