Анализ состояния проблемы и обоснование задач
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

 Актуальность проблемы. В механизации многолетних культур на стадии разработки проектов системы машин имеет существенное значение выбор наиболее целесообразных решений как по определению последовательности их включения в технологические схемы, так и предпочтительного их включения в планы конструкторских разработок. При этом обязательно учитывать возможную деградацию среды, которая изначально заложена в культуру: в результате многократного однообразного воздействия на неё среда «стареет» быстрее, чем культура. Поэтому, с каждым новым вегетационным циклом, влияние на культуру накапливаемых средой отрицательных факторов увеличи-вается. В конечном итоге культура входит в неблагоприятные для неё параметры среды значительно раньше своего возрастного состояния. От этого, прежде всего, страдает хозяйственная деятельность общества: накопление отрицательных факторов среды приходится учитывать созданием материально-технической базы (МТБ) с завышенной прочностью. А это ведёт к перерасходу в первые годы насаждения материальных, трудовых и энергетических ресурсов. Особенно это заметно в регионе Северного Кавказа, где сосредоточено около 30% плодово - ягодных культур и 100% виноградников Российской Федерации. Научно обоснованные методы оценки и выбора наиболее выгоднейшего из них для многолетних насаждений до настоящего времени отсутствуют. Применяемые методы проб и ошибок, Паттерн - анализа и группового учёта аргументов используются только для негативного прогноза, чтобы показать, чего не может быть, если всё в Паттерне будет происходить так, как происходит сейчас.

Актуальность исследований заключалась в нахождении метода достоверного прогноза развития уровня механизации садоводства и виноградарства через выявление принципов оптимального стыка средств ухода с постоянно изменяющимися параметрами объектов ухода.

  Исследовательские и конструкторско-технологические работы проводились в СКЗНИИСиВ в соответствии с планами НИР и ОКР на основании заданий Государственного комитета по науке и технике 0.51.02 (проблема 16.01 и 16.14), межотраслевой комплексной программы (0.сх.101 и 2.51.04), а также по прямым договорам с Агропромом СССР, АПК Краснодарского и Ставропольского краёв, Ростовской области и хозяйствами - производителями садово - виноградной продукции.

  Цель работы заключается в обосновании, разработке и использовании научных основ формирования оптимальной материально-технической базы для создания конкретных механизированных технологий многолетних насаждений.

  Объекты исследований. Процесс развития стыка параметров многолетних насаждений, архитектоники крон и средств ухода за ними; физико-механические свойства почв и элементов крон, стыкующихся со средствами ухода; технологии ухода за почвой, системой «шпалера - куст», внесения удобрений, укрывки и открывки виногра-дников, уборки урожая; рабочие органы культиваторов, машин для внесения в почву жидких минеральных удобрений, ухода за кроной и монтажа шпалеры, укрывки и открывки виноградников, уборки урожая.

 Методика исследований. Для выработки основ формирования и управления механизированными технологиями многолетних культур разработан общий научный подход, который исходит из единой стратегии решения глобальной системы методами проектологии: сравнивается совокупность технических средств разного функционального назначения, но используемых в одной и той же отрасли для выработки одного и того же продукта. При этом совокупность технических средств одного и того же функционального назначения рассматривается как самостоятельная система машин, а совокупность систем машин для технологии получения одного и того же продукта , как товара, рассматривается как комплекс систем механизированных технологий [43, 54, 62, 64, 65, 79, 89, 95].

   В основу методики исследований оптимального стыка средств ухода с объектами ухода положен принцип, устанавливающий связи и допустимые пределы внутрисистемного влияния друг на друга свойств среды и средств ухода.

     Исследования средств ухода базировались на положениях земледельческой механики и математической статистики. Лабораторно - полевые эксперименты проводились согласно отраслевым стандартам, дополненных частными методиками и приборами [20, 21, 26, 31, 32, 41, 68, 94].

Разработанная методология использована в ежегодных компаниях заказа техники для садоводства и виноградарства Краснодарского [54, 85] и Ставропольского [71, 72] краёв.

 Научную новизну составляют: 

n методология модульного системного анализа технологий, как инструмент отбора оптимальных агротехнических систем, с последующим их направленным совершенствованием;

n математические модели расчёта: механизированной технологии культуры через тарифные издержки; интенсивности механизированной технологии через алгоритм, характеризующий величину согласованности входящих в технологию компонентов; параметров архитектоники кроны через плодоносность и физико-механические свойства её элементов; параметров выемочно - насыпного профиля почвы в технологии защиты виноградного куста от низких температур через естественные параметры ограничения (упругость пучка лоз, глубину проникновения отрицательных температур и угол естественного откоса насыпного профиля);

n метрология изучения взаимодействия рабочих органов машин с объектами ухода;

n классификация и формализация функциональных отличий насаждений и крон растений на фоне уровней в мировой градации поколений техники, структурно отображающиеся согласованностью, повторяемостью и целесообразностью стыка средств ухода с объектами ухода;

n индустриальные системы «шпалера - куст» для промышленного и индивидуального виноградарства.

Технологические схемы и технические решения защищены 26 авторскими свидетельствами и патентами РФ, 7 из которых отражают новые способы ухода и ведения культур.

Достоверность основных положений, выводов и рекомендаций подтверждены экспериментальными данными лабораторно - полевых исследований, положительными результатами заводских, ведомственных и государственных испытаний рабочих органов, машин, способов и систем, разработанных с участием соискателя.

Практическую ценность работы для многолетних культур представляют:

n методология прогнозирования технического прогресса и обоснование путей совершенствования зональных систем машин;

n метрология и приборы для изучения условий функционирования агрегатов и рабочих органов по уходу за почвой, кроной и шпалерными системами;

n система мероприятий, технологические схемы машин и технические решения по снижению антропогенного влияния на почву механизированных технологий;

n рекомендации и технические решения:

- оптимального стыка технологических систем «крона - шпалера» при различных формах хозяйствования;

- технологии пунктирного глубокого внесения жидких минеральных удобрений, в том числе и в зону ряда;

- технологии защиты растений от низких температур;

- технологии контейнерной уборки, транспортировки и хранения плодов, ягод и винограда.

Реализация результатов исследований. Разработанные единые концептуальные подходы [20, 21, 70, 89, 95, 107] использованы:

n в справочнике виноградаря Кубани [54];

n в совершенствовании методов разработки технологических карт [62];

n в решении проблем развития виноградарства Краснодарского края [68];

n в учебном процессе заочных курсов садоводства [69];

n в системах машин для садов Ставропольского [71] и Краснодарского [85] краёв, садоводства России [90], интенсивного садоводства Северного Кавказа [58], питомников плодовых, ягодных и орехоплодных культур [87], прогнозе развития технического уровня садоводства до 2010 года и анализа его современного состояния в Северо - Кавказском регионе [Агропром CCCР, 1986 г ].

    Разработаны и внедряются технологии:

n уборки, транспортировки и хранения плодов, ягод и винограда в кассетных контейнерах [79];

n возделывания, транспортировки и переработки технических сортов винограда машинной уборки [74];

n применения жидких комплексных удобрений в садах и виноградниках [63];

n по защите виноградников от низких температур [11].

Разработаны и внедряются способы:

n Краснодарский формирования виноградного куста [111];

n ведения виноградного куста на шпалере [112];

n ведения укрывной культуры винограда [113];

n крепления виноградных лоз [115];

n борьбы с корневищными сорняками в рядах культурных растений [120];

n ведения интенсивного сада [125].

Полученные рекомендации внедрены в поставленных на производство машинах - для внесения жидких комплексных удобрений в садах МГУС-2,5 и виноградниках МВУ-2000, автоматической линии для изготовления и затаривания на спецкассеты крепёжных скоб; устройствах - контейнера кассетного для затаривания лотковой первичной тары при уборке, транспортировке, хранении и реализации винограда, плодов, ягод и овощей КПТ-28, стойки железобетонной для шпалеры индустриальной ВС-20-4.ТУ10 РСФСР 21-01-89; приспособления лозоукладывающего ПРВН-39000Э; приборах динамометрических ПТЛ-1, ДТ-1, ДЛ-3, ПУВЛ, ПЛ-50-5, МД-1, ДМЗ-3, разработанных совместно с Одесским филиалом НПО «Агроприбор» для изучения взаимодействия рабочих органов машин с элементами крон древесных растений [32, 41, 44. 68, 94].

Модернизированы и внедрены через мастерские хозяйств виноградниковые плуги - рыхлители ПРВН-2,5, приспособления ПРВН 72000, садовые культиваторы КСГ-5, фрезы ФА-0,76А, рабочие органы для двухслойной обработки почвы в междурядьях, мульчирования колеи и приствольной полосы, плуги - рыхлители ПРВН-2,5 для укрывки лозы почвой, взятой из межколейного пространства междурядий и столбостав ЗСВ-2 для транспортировки контейнеров одновременно в 3 ... 5 междурядьях, обеспечивающие снижение тягового сопротивления агрегатов не менее, чем на 25 % и увеличение производительности труда в 1,5 ... 1,8 раза.

Апробация работы. Основные положения диссертации докладывались на заседаниях Учёного совета СКЗНИИСиВ (1966 ... 1995 г.г.); четырежды - на научно - технических конференциях ВИСХОМ (1970, 1972, 1976, 1985 г.г.); пять раз - на научно - практических конференциях «Научно - технический прогресс в инженерно - технической сфере АПК России» в ВИМ (1992) и ГОСНИТИ (1993, 1994, 1995, 1996); шесть раз - на Всесоюзных научно - технических конференциях в Краснодаре (1977, 1984 г.г.), во Львове (1974 г.), в Каунасе (1982 г.), в Нальчике (1987 г.), в Санкт-Петербурге (АФИ, 1993 г.); дважды - на НТС Госпрома РСФСР (1988 г.); дважды - на Всесоюзных семинарах ВДНХ СССР (1974 г.) и ЦИНАО (1976 г.); четырежды - на научно - методических совещаниях НТО СХ в Орджоникидзе (1979 г.), Зернограде (1980 г.), Кишинёве (1983 г.), Краснодаре (1983 г.); четырежды - на Координационных советах по проблеме О.СХ.61 в Новочеркасске (1984, 1996 г.г.), Тбилиси (1985 г.), Ялте (1991 г.); трижды - на заседаниях секции ВРО ВАСХНИЛ «Комплексная механизация и электрификация растениеводства» в Зернограде (1984, 1985, 1991 г.г.); на заседании Президиума ВРО ВАСХНИЛ (1989 г.).

Методические, технологические, научно - исследовательские и конструкторские разработки демонстрировались на ВДНХ СССР и отмечены 13 медалями, в том числе 2 золотыми.

Публикация результатов исследований. Основное содержание диссертации изложено в 125 научных работах, в том числе - в одном справочнике, трёх методиках, четырёх монографиях, 18 рекомендациях, 7 агроуказаниях, 6 брошюрах и 60 научных статьях общим объёмом 207 п. л., в том числе лично автора 58,8 п.л., а также 26 авторских свидетельствах и патентах.

На защиту выносятся результаты, перечисленные в рубриках «Научная новизна», «Практическая ценность» и «Реализация результатов исследований».

 

СОДЕРЖАНИЕ РАБОТЫ

Исследований

Моделирование технологий в растениеводстве рассмотрено в работах А.Б.Лурье, М.С.Рунчева, Э.И.Липковича, П.Н.Бурченко, Г.П.Варламова, М.Е.Демидко, В.Я.Зельцера, А.В.Четвертакова, Ю.А.Уткова, А.А.Никонова, Н.Н.Походенко, В.И.Могоряну, Т.Е.Малофеева, А.М.Гатаулина и др. Анализ этих работ показал, что они в принципе аналогичны синтезу системы отображения массива данных через однородные порции, используемого в работах В.А.Вей-ника, Н.П.Бусленко, В.Ф.Венды, Е.Г.Гольштейна, В.В.Налимова, Н.Н.Моисеева, М.П.Перетятькина, И.И.Кандаурова, А.Н.Зеленина, В.И.Баловнева, И.П.Керова, С.Директора, Р.Рорера, Джозефа Р. Шен-филда, Кеннета Кюнена и др.

Указанными исследованиями доказано, что моделированию мо-жет быть подвержена любая проблема любой системы, если массив данных о процессах, протекающих в системе, отобразить через осно-вной процесс, обратные связи и ограничения. Этот принцип был положен в основу разработки комплексов машин. Однако методы отображения информации в конкретных механизированных технологиях до сих пор не носят обобщающего характера. Особенно это относится к технологиям многолетних насаждений, где для сходных условий среды пока управляемыми являются только входные и выходные параметры технологии (размещение растений во время закладки массива, уровень спелости урожая и т. п.), а внутреннее функционирование и развитие составляющих технологии до сих пор остаётся «черным ящиком», т.е. «неоптимизировано и неуправляемо» [43, 65, 70].

Гипотетически проблема состоит в том, что в управлении фун-кционированием технологии недостаточно учтены: многолетность насаждения; неизменность схем посадок, при непрерывном изменении архитектоники крон; изменение свойств среды в результате многократного однообразного циклического воздействия на неё; предельные параметры стыка в системе машина - растение - среда.

Исходя из высказанной гипотезы, потребовалось решить следующие задачи:

n изучить формирование многолетних насаждений в процессе индивидуального и группового развития на фоне мировой градации поколений техники;

n разработать методологию оптимизации управления функционированием и развитием механизированных технологий многолетних насаждений;

n выполнить с помощью разработанной методологии анализ современного состояния и прогноз развития технического уровня садоводства Северного Кавказа и виноградарства Краснодарского края;

n выбрать из массива данных анализа приоритетные направления и с помощью разработанной методологии обосновать оптимальные параметры их механизированных технологий, рабочих органов и машин.

 

2. Исходные предпосылки оптимизации управления

Реализация методологии

Управление функционированием и развитием механизированных технологий многолетних культур имеет свою специфику, которая заключается в том, что, в отличие от однолетних культур, в производ-стве одновременно существуют насаждения с различной стадией раз-вития: закладки, воспитания и эксплуатации. Поэтому потребовалось провести специальный анализ технического уровня категорий стадии. При этом учитывался тот факт, что чем старше насаждение, тем менее оно соответствует современным средствам механизации, прежде всего по достаточности площадей для загрузки в агросрок машин каждого модуля в пределах коэффициента эластичности  = 0,668 ... 0,884 (В.И.Могоряну, 1977). Оценочным критерием служила величина значимости каждого модуля.

Установлено, что для  = 0,668 ... 0,884 в регионе к началу XII пятилетки во всех категориях хозяйств насчитывалось около 75% тракторопригодных насаждений. Доказано [62, 64, 73, 89], что оптимальная площадь нагрузки комплекса машин в агросрок определяется методом кратности к наиболее загруженному модулю, который принимается равным единице. На период до 2010 года эта площадь будет в пределах 200 га. Исходя из этого предела, выполнен количественный расчёт машин в модулях систем садоводства Ставропольского [71], и Краснодарского [85] краёв, России [90] и систем виноградарства Краснодарского края [54].

Расчётный состав техники повышает эффективность этих систем за счёт:

n предельно возможной выработки нормосмен в агросрок [49, 53, 62];

n снижения расходов горючего, ядохимикатов, удобрений и тары, благодаря своевременного и в необходимых параметрах выполнения работ [17, 46, 47, 50, 57, 63, 66, 78];

n снижения количества повторяющихся операций на обработке почвы, благодаря рационально подобранных способов и машин [71, 85, 87, 92, 96, 97, 98];

n увеличения урожайности, благодаря обеспечения оптимальных параметров среде каждым модулем [43, 46, 73, 93, 94].

Сравнительная оценка годичной эксплуатации комплекса машин на оптимальной площади эксплуатационного сада показала [99], что внедрение полномерного комплекса на каждых 200 га даёт 69,2 тыс. рублей и 39,5 тыс. чел.-часов экономического эффекта (табл.10).

Таблица 10

Экономическая эффективность

реализации методологии на площади 200 га богарного сада

 ОПХ «Центральное» СКЗНИИСиВ (в ценах 1990 г.)

 

Наименование

тысяч чел.-час

Сниже-ния за -

тысяч рублей

Сниже- ния за-

компонентов системы 1986 - 1990 гг. 1991-1995 гг. трат до, % 1986 - 1990 гг. 1991-1995 гг. трат до, %  
Общетехнологический - - - 53,1 53,1 100  
Базовый 83,4 47,0 56,3 42,5 24,5 57,5  
Материальный - - - 79,3 40,0 57,5  
Функциональный 4,3 2,5 58,4 23,3 12,0 50,4  
Сопутствующий 2,7 1,4 51,3 1,2 0,6 50,0  
Итого по технологии 90,4 50,9 55,3 199,4 130,2 61,9  

Анализ технического уровня садоводства Северного Кавказа показал, что суммарные затраты труда по стадиям технологии соста-вляют: 10,3 % на закладку, 12,6 % на воспитание и 77,1 % на эксплуатацию насаждения. То есть, менее всего механизирована стадия эксплуатации сада. В ней на долю машинного труда приходится 5,3 долей ручного, а в стадии закладки лишь 1,6. По приоритетности первый ранг по величине затрат труда принадлежит уборочному модулю, за ним - габитусному стадии эксплуатации, затем стадии воспитания и, наконец, стадии закладки. Остальные модули не превышают и 15 единиц условной площади графовой модели (рис. 9).

 Рис. 9. Современное состояние технического уровня

садоводства Северного Кавказа в модульной и стадийной

 значимостях (модульная последовательность согласно табл. 6)

Анализ технического уровня виноградарства Краснодарского края показал [54], что любая технология его возделывания логично делится, как и в садоводстве, на стадии закладки, воспитания и эксплуатации насаждений. Каждая стадия в информационном плане чётко отображается средой обитания, сортом и трудом, которые по своей специфике являются ресурсами культуры. Из пооперационного анализа производства работ в стадиях следует, что работы могут быть сблокированы по принадлежности к объекту обслуживания и что таких автономно существующих блоков (модулей) в каждой стадии насчитывается от 5 до 7 [95]. Из-за разнообразия почвенно - кли-матических условий Кубани [16, 24, 33, 81, 82] каждый модуль имеет от 6 до 10 вариантов(в общей сложности их 62 - для укрывной и неукрывной культуры на равнине и склонах [54]). Структурно они однотипны, так как включают родовые операции, машинно - тракторную базу и тарифные ограничения, это позволяет их отнести к модулям технологии [70].Анализ затрат труда на примере ухода за виноградником технических сортов показал[91], что в виноградарстве Кубани, как и в садоводстве Северного Кавказа, существует неравномерность технического уровня по стадиям и модулям. Наиболее приоритетным по величине здесь является габитусный модуль (рис. 10).

Рис. 10. Современное состояние технического уровня

 виноградарства Краснодарского края в модульной и стадийной

 значимостях (модульная последовательность согласно табл. 6)

Суммарные затраты по технологии состоят из 14,5 % стадии закладки, 53,1 % стадии воспитания и32,4 % стадии эксплуатации. То есть, менее всего механизирована стадия воспитания насаждения. При этом наиболее трудоёмкими являются крепление кордонов к шпалере, обрезка однолетнего прироста и уборка урожая. На параметры крепления кордонов, механизированную обрезку прироста и уборку урожая в сильной степени влияют качественные показатели конструкций шпалерных систем. Выявлена прямая связь между рабочими органами машин, архитектоникой куста, конструкцией шпалеры, способами обрезки прироста и уборки урожая [16, 19, 23, 26, 29, 30, 31, 38, 43, 44, 56, 60, 67, 68, 75].

 

5. Выбор рациональных параметров оптимизации

Создание и обоснование

 оптимальных параметров габитусного модуля

Установлено [16, 23, 26, 31, 37, 38, 41, 43, 44, 56, 60, 65, 67, 68, 79, 80, 83, 92, 94, 96], что в модуле объективен стык растения с почвой, растения со шпалерой, шпалеры с почвой и растения и шпалеры со средствами ухода. Этот набор стыкующихся пар возможен и в садоводстве и в виноградарстве. Поэтому, с целью рациональности рассмотрим наиболее вероятные стыки, использовав морфологию форм нагрузок (рис. 11).

Стык растения с почвой обусловлен природной связью корней, поэтому повреждение их в бесшпалерных формах насаждений на подвоях типа М9 приводит к опрокидыванию растений от нагрузок, создаваемых ветром, гололёдом, урожаем (формы 1 ... 4, рис. 11). Для сведения до минимума отрицательного влияния нагрузок потребовалось исключить повреждение корней при обработке почвы в приствольных полосах и при внесении удобрений в корнеобитаемый горизонт. 

Проблема щадящей почвообработки решалась заменой режущих рабочих органов фрезы ФА-0,76А на молотковые, а у дисковых - заменой технологии подрезки сорняков на технологию окучивания и разокучивания, чередование которых должно начинаться с осеннего окучивания ряда и весеннего его разокучивания. В роли молотковых рабочих органов использовались цепные шлейфы, смонтированные на фланцах барабанов фрез по спиралям четырёхзаходной схемы с провисанием от центробежных сил по форме цепной линии в пределах внешних параметров фрезбарабанов. Спиральное закрепление цепных шлейфов позволило решить проблему управления движением в ряд или из ряда, сбивающегося до глубины 0,03 м цепями слоя почвы с прорастающими сорняками. Цепные рабочие органы на фрезах ФА-0,76А позволили распространить их внедрение на каменистых почвах [97]. Выносной нож на секции культиватора КСГ-5 заменён аналогичным имеющемуся у ФА-0,76А цепным фрезбарабаном с гидроприводом. Для внесения удобрений в корнеобитаемый горизонт (глубина 0,30 ... 0,50 м) рыхлящие рабочие органы заменены игольчатым колесом, а твёрдые удобрения - на жидкие минеральные [37, 40, 45, 47, 50, 52, 61, 63, 66]. При внесении растворов в зону ряда игольчатое колесо самоустанавливается по изоплоскостям твёрдости пахотного горизонта (рис. 15.1) [114], а при внесении в междурядьях игольчатое колесо устанавливается за рыхлящим рабочим органом глубже его хода на 0,20 ... 0,25 м между экранами, не допускающими контакта раствора с почвой пахотного горизонта (рис. 15.2) [110].

Рис. 15. Рабочие органы для внесения растворов

минеральных удобрений в корнеобитаемый горизонт:

                       1) зоны ряда;

2) междурядья

Базовой машиной для этих рабочих органов является любой прицепной опрыскиватель, имеющий нагнетательную систему. Разработки [110 и 114] послужили основой создания машин МГУС-2,5 и МВУ-2000, выпуск которых организован на Львовагрохиммаше в 1984 и 1986 гг. Экспериментальные материалы использования удобрителей приведены в доказательстве работоспособности методологии (разд. 3, табл. 7, 8, 9).

Стык растения со шпалерой в связи с почвенно - климатическими условиями многовариантен: в неукрывной зоне виноградарства по формам 4 и 5; в укрывной - по формам 2, 3, 4, 6; в садоводстве - по формам 1 и 4 (рис. 11).

С позиции архитектоники кроны неукрывного виноградного куста штамб и кордоны являются однотипными элементами, которые продолжают рост темпоральными слоями: апикально и латерально (рис. 1). На первый параметр влияют обрезной, а ко второму приспосабливаются, не допуская пережима магистралей сокодвижения. Слабо закреплённые на шпалере кордоны искривляются по длине, и если отсутствует крепление кордона у штамба, то кордон искривляет и сам штамб, что ухудшает параметры стыка следящих систем машины с системой шпалера - виноградный куст. Система шпалера - виноградный куст в этом случае приобретает свойства «изменяемой системы», которая не в состоянии уравновесить внешние силы и, под действием приложенных нагрузок, меняет свои параметры. Согласно законов строительной механики, подобные системы нельзя использовать в качестве сооружений. Несмотря на это, в виноградарстве они являются основными «сооружениями»! В них сохранность геометрических форм шпалеры ложно отождествляется с формой куста. Автором [115] найден принцип стыка, позволяющий отождествлять системы шпалера - виноградный куст с сооружениями. Для этого в систему введена, как посредник, «упругоперемещающаяся опора» (передаточная балка), характеризующаяся «коэффициентом податливости». Этот коэффициент определяет меру деформационной способности опорных закреплений кордонов на проволоке и численно выражает величину перемещения кордонов единичными опорными нагрузками в точках сжатия (т.с.), расположенных попеременно то сверху, то снизу (форма 5, рис. 11). Здесь, при малом изгибе кордона по Е.П.Попову (1986), модулярный угол упругой кривой эллиптического интеграла Лежандра (1771) , а значения эллиптических интегралов  первого рода и  второго рода стремятся к амплитуде эллиптического интеграла , которая изменяется в пределах , где

              ;                              (26)

 

                                               (27)

 - модуль упругости материала кордона при изгибе;

 - для формы перегибного рода;

 - произвольная постоянная, определяемая начальными условиями, например, величиной прогиба кордона.

Тогда уравнение периодической упругой кривой, то есть закреплённого кордона на шпалере, запишется в виде

         ),  ,                               (28)

где  и  - оси координат формы 5 (рис. 11) с началом в точке .

Из - за малой величины  рассмотренный случай (26), (27), (28) соответствует приближённой теории продольного изгиба, ось действия которого проходит через точки перегиба (т.п.) формы 5 (рис. 11), то есть, между посредниками. Поэтому никакие приложенные нагрузки на кордон не приведут этот стык к системе мгновенно изменяемой. Здесь на величину подпора огромное значение оказывает шаг установки передаточных балок (табл. 12).

Таблица 12

Результаты замера физических параметров

 крепления на шпалере кордонов сорта Совиньон

 передаточными балками

(формировка высокоштамбовая со свободным свисанием прироста)

  Ед.

№ балки от штамба, год замера

Показатели Изм.

I

II

III

    1 2 3

1

2 3

1

2 3  
Диаметр кордона  в месте крепления мм 17,5 21,1 28,3

16,7

18,3 24,6

14,3

16,1 22,2  
Глубина вмятины кордона балкой мм 1,22 1,31 0,99

1,35

2,16 1,34

1,1

0,83 0,86  
Шаг установки  балок м 0,27 0,26 0,26

0,24

0,22 0,24

0,28

0,24 0,24  
                           

 

Из табл. 12 следует, что уменьшение шага установки балки (11) увеличивает глубину вмятины кордона балкой, а следовательно и подпора. Наличие явления подпора позволило отказаться от охвата кордонов крепёжным устройством. Роль крепёжного устройства стали выполнять передаточные балки, которые в этом случае являются принадлежностью шпалеры, как перемычки верёвочной лестницы. В конечном итоге кордон контактирует с любым элементом шпалеры только двумя какими - либо сторонами: сверху или снизу, слева или справа. Полного охвата кордона элементом крепления при этом не наблюдается. Следовательно, перекрытия магистралей сокодвижения в кордоне не может быть, сколько бы времени ни существовал кордон. Передаточная балка в этом случае являет собою средство постоянного крепления кордонов на шпалере, выполненное из шпалерной проволоки в виде с-образной скобы.

Принципиально в решении поставленной задачи величина реакции на передаточных балках от силы упругости кордона, расположенного попеременно то над передаточной балкой, то под ней, играет основную роль.

Производственная проверка показала перспективность перевода кордонов на многолетний способ их крепления с-образными скобами. Для внедрения этого способа разработана технология крепления [75, 80] и три станка - скободела, обеспечивающие перевод до 3 тыс. га виноградников на многолетнее крепление в конце стадии воспитания. Затраты труда на креплении снижаются по сравнению с подвязкой мочалом в 24 раза, а канатиком - в 19 раз. Уровень механизации при креплении кордонов скобами достигает 96 %, за счёт изготовления скоб автоматом - скободелом и десятилетнего их использования.

Крепление (рис. 16) начинается с заводки кордона снизу между

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Рис. 16. Вид на элементы высокоштамбового куста

после выполнения всех операций, связанных с креплением

 кордонов с-образными скобами 1 и вытяжкой штамбов 2

парой шпалерных проволок, которые являются главной несущей балкой. После этого одевается на эту балку на расстоянии длины кордона три скобы по схеме вниз - вверх - вниз разрезами. Затем первая скоба перемещается по главной несущей балке до упора в кордон, который подтягивается вверх и укладывается на неё, пропуская вниз между проволоками несущей балки, вторая скоба перемещается до середины кордона, который укладывается на неё снизу, возвращается вверх между проволок главной балки и подпирается снизу третьей скобой. Расстояние между скобами не должно выходить за пределы 0,25 ... 0,40 м, что обеспечит подпор в точках стыка в пределах допустимого удельного давления скобы на кордон и выравнивание подтяжкой штамбов.

Принцип стыка растения со шпалерой и почвой посредством передаточных балок использован в создании индустриальной шпалерной системы (рис. 17).

   
   
   
   
   
   
   
   
   
   

 

Рис. 17. Индустриальная шпалерная система

Отличительной особенностью этой системы от известных является замена жёстких чётных опор на гибкие диады 1 по типу якорных оттяжек 2, закрепление которых на штамбах осуществлено принципом передаточных балок 3, а в почве - корневой системой кустов 4.

Согласно методики расчёта висячих систем (И.С.Доценко, 1976) неизменность и неподвижность индустриальной шпалерной системе обеспечивается балкой жёсткости (землёй) через опоры 5, диады 1 и якорные оттяжки 2. Так как на диады и якорные оттяжки действуют силы растяжения, то решение задачи сводилось к определению силы сопротивления выдёргиванию виноградных кустов и яко-рей из почвы (табл. 13). Замер усилий производился специальным вертикально расположенным силоизмерительным звеном, присоединённым внизу к кусту или якорю, а вверху - к фаркопу навески трактора.

Таблица 13

Сравнительные данные сопротивления выдёргиванию якорей

и кустов из почвы. (Сорт Алиготе, 7 лет, почва - выщелоченный предкавказский чернозём)

 

Элемент системы

Сопротивление выдёргиванию, кГс

Время воздействия на элемент, с

  макс. миним. макс. миним. кульминация
Якорь без корней 614 301 1,67 1,33 0,62
Якорь с корнями 1030 750 2,51 1,88 1,5
Корневая система куста 832 683 1,7 1,03 1,15
Шейка куста 489 433 1,4 1,1 1,07

 

В качестве силоизмерительного элемента использовано тяговое звено конструкции ВИСХОМ - НАТИ, рассчитанное на

= 1500 кГс.

По всем показателям (табл. 13) якорение диад корнями эффективнее почти в 2 раза.

Надёжность параметров стыка диад и якорей с почвой через корневые системы кустов проверялась в течение 8 лет (табл. 14) на специальной лабораторно - полевой установке подвесной шпалеры.

Таблица 14

Данные многолетних сравнительных замеров параметров

якорных оттяжек и диад. Сорт Алиготе, 7 ... 15 лет

 

Элементы системы

В метрах по годам

 
  1977 1978

1979

1984

Оттяжки якорные 2,956 2,900 2,990

2,933

 
Диады 3,651 3,619

3,654

3,660

             

 

Полученная информация (табл. 14) подтверждает надёжность закрепления якорных оттяжек и диад корневой системой кустов. В среднем длина диад, расположенных ближе к якорным опорам, (наиболее нагруженным), колебалась в диапазоне 2,777 ... 2,881 м. Этот разбег лежит в пределах температурных деформаций материала диад.

Эффективность внедрения индустриальной шпалеры достигается снижением затрат на её сооружение (табл. 15).

Таблица 15

Сравнительная эффективность технологий посадки

саженцев винограда и сооружения шпалеры.

По данным анализа отдела механизации СКЗНИИСиВ (1991г)

 

Операции Технологии чел-ч / га руб / га (1990г) н-смен / га
  I Типовая 109,65 53,63 6,74
Посадка II Применяемая 103,50 51,38 5,44
  III Предлагаемая 108,93 53,21 5,70
  I Типовая 64,63 35,63 7,44
Сооружение шпалеры II Применяемая 64,63 35,63 7,44
  III Предлагаемая 38,18 18,75 4,23

 

 Стык растения и шпалеры со средствами ухода наблюдается на операциях защиты кустов от низких температур, которые наиболее трудоёмкие [5, 6, 11, 16, 23, 24, 28, 35, 69]. Для оценки была разработана модель зон препятствий, состоящая из зоны залегания лозы, зоны расположения нижней шпалерной проволоки, зоны отклонения опоры от номинального положения на высоте максимального радиуса поворота рабочего органа, зоны перемещения пласта почвы и зоны рамы плуга.

Для укрытия виноградников без подъёма нижней шпалерной проволоки рабочий орган лозоукладчика должен навешиваться на раму плуга с помощью наклонного вала. Этот вывод сделан на основании решения уравнения

               (29)

и неравенства

,            (30)

где  - угол атаки входного отверстия лозоукладчика, град;

    - наклон вала к полю, град;

   0,40 - расстояние от земли до первой проволоки, м.

Уравнение (29) выведено из условия обхода уложенного пучка лоз выходным отверстием лозоукладывающего рабочего органа без задира пучка, т.е. из условия равенства радиусов кривизны в точке  эллипса « » и траектории точки  « » (рис. 18). Неравенство (30) выведено из условия незадевания нижней шпалерной проволоки лозоукладывающим рабочим органом при обходе опоры.

   
   
   
   
   
   
   
   
   
   
   
   

    Рис. 18. К определению                 Рис. 19. К определению

рационального угла наклона           предельного угла наклона

оси поворота лозоукладывающего         пучка лозы в смежное

         рабочего органа                                   междурядье

Для более полной укладки лозы у опор, согласованного обхода опор и поднимаемого пласта рабочая поверхность лозоукладчика должна быть выполнена двухдуговой. Этот вывод сделан на основании того, что во время укладки пучка лоз , пучок сначала нагружается только передней кромкой лозоукладывающей поверхности, потом на мгновение передней и задней и, наконец, после прохождения максимальной упругости, нагружается только задней кромкой. Момент отрыва пучка лоз от входного отверстия определял рациональную длину лозоукладывающей поверхности (форма 3, рис. 11), т.е.

                ,

где  и  - соответственно прогибы пучка лоз от входного и выходного отверстий. Они определялись путём составления дифференциальных уравнений упругих линий с последующим двойным интегрированием с помощью приёма Клебша.

В результате:

                  ,                            (31)

                   ,                     (32)

где  - длина пучка лоз;

 - жёсткость пучка лоз;

 и  - нагрузка на пучок лоз входным и выходным отверстиями.

Так как при полной укладке угол поворота пучка  и , то

                   и          .

Тогда длина лозоукладывающей поверхности

                        ,                                                 (33)

где  - расстояние от штамба до максимума упругости пучка  21 ... 25 см (21).

В двухдуговом лозоукладывающем рабочем органе входное и выходное отверстия должны быть развёрнуты параллельно движущемуся пласту почвы. Разворот при  не ухудшает собирающей способности лозоукладывающей поверхности. Этот вывод сделан на основании решения равенства

             ,                            (34)

где  - угол запаса наклона пучка лоз в смежное междурядье ( );

   - коэффициент трения лозы о металл.

Равенство (34) определяет момент вхождения пучка лозы в конус трения лозы о металл. Для нахождения этого момента движение точки контакта пучка  с дугой представлялось в виде линейного преобразования трёхмерного пространства, путём вращения точки  вокруг фиксированной оси  (оси ряда) с одновременным растяжением этой оси и расстояния от места защемления лозы до точки контакта  (рис. 19).

В результате форма и параметры лозоукладывающей поверхности определяются путём графической деформации конической поверхности лозоукладчика для бесшпалерных виноградников [1]. При этом шаблоны для гибки дуг могут быть построены по уравнениям: для входного отверстия [29]

                                                    (35)

и выходного отверстия

                                  ,            (36)

где  и  - радиусы проекций входного и выходного отверстий лозоукладывающей поверхности на вертикальную, поперечную движению агрегата, плоскость: 150 и 300 мм.

Удельное давление кромок переднего и заднего отверстий лозоукладывающей поверхности при развёрнутых отверстиях под углом  меньше, чем при . Этот вывод получен на основании решения равенства, определяющего удельное давление на пучок лоз кромками отверстий

                                (37)

где  - вертикальная составляющая упругости лозы [21].

Размеры выемки вспаханного сечения при укрытии для междурядий , ширина которых более двух метров должны быть такими, как и у рациональной выемки двухметрового междурядья, т.е. по глубине = 18 ... 20 и средней ширине = 90 ... 100 см. Этот вывод сделан на основании анализа почвенного баланса в междурядьях виноградников между площадью поперечного сечения вспаханной почвы и площадью поперечного сечения вала.

Так как для двухметрового междурядья максимальные размеры выемки обусловливаются минимальным углом откоса вала  (28 ... ), то рациональные параметры выемки (  и ) можно определить из уравнения

                    ,                (38)

где первый корень равен , а второй - (из графического решения с помощью параболы и секущей прямой). При этом между углом естественного откоса почвы в валу , толщиной защитного слоя почвы над лозой , радиусом залегания лозы , глубиной вспашки  и шириной междурядья В существует следующая зависимость:

     (39)

где .

Угол скоса лезвия  укрывочного корпуса  должен быть не менее , так как уменьшение этого угла приводит к лишней деформации бороздной стенки выемки. Этот вывод сделан на основании исследования функциональной зависимости между углом скоса лезвия , углом наклона откоса выемки  и углом наклона плоскости скалывания почвы впереди клина , которая может быть выражена следующим равенством

                ,                                          (40)

откуда, при  и  (среднеарифметиче-ская величина нижнего предела угла скалывания почв) .

Параметры направляющей кривой рабочей поверхности укрывочного корпуса могут быть определены путём построения траектории безостановочного движения внешних точек «элементов пласта» для средних почвенных условий вспашки (при деформации почвы клином) потому, что её вогнутость и вылет зависят от глубины вспашки, шага скалывания и угла скалывания . Исходя из условий деформации почвы косым клином и полосной характеристики почвы в междурядьях виноградников (рис. 4), копающая часть укрывочного рабочего органа может быть составлена в виде листера из двух лемешно - отвальных поверхностей укрывочных корпусов плуга ПРВН-2,5А с общей шириной захвата, равной 1,0 м. При этом направляющая кривая для обеих поверхностей может быть общей и лежащей в плоскости симметрии листера. Этот вывод сделан на основании того, что риски истирания вблизи носков лемехов укрывочных корпусов почти параллельны направлению движения агрегата.

Для транспортирования почвы от выемки на уложенную лозу рационально применять дисковые транспортёры, установив их под бороздными обрезами отвалов укрывочного листерного корпуса с углами плоскости вращения дисков к поверхности поля  и к направлению движения агрегата . Качественного укрытия при этом можно получить коническими дисками диаметром  м и высотой  м.

При таких параметрах транспортёра пласт, поступивший на коническую поверхность, сойдёт с неё в районе точки касания плоскости вращения диска с поверхностью поля, так как

                    ,                                      (41)

где ,

      - угол трения почвы о сталь,

      - угол естественного откоса почвы,

      - угол наклона бороздного обреза отвала к поверхности поля.

Этот вывод получен на основании исследования зависимости между углами  ,   и расстоянием  от вертикального бороздного обреза отвала до зоны залегания лозы, которая может быть выражена равенством

                   ,                                                   (42)

где                                                                                          (43) 

и  ,                                                        (44)

а  - общая ширина захвата листерного корпуса, м.

Из равенства (44) видно, что с увеличением  и  увеличивается, а с уменьшением - стремится к единице. Следовательно, согласно зависимости (42), выгодно стремиться к уменьшению  и . Но так как при , принимаем . Тогда для сочетания углов  и  с параметрами бороздных обрезов отвалов, наиболее рациональной поверхностью дисков будет коническая, высота которой находится из равенства

                                                              (45)

Затраты энергии трактором зависят от постановки дисков по высоте и глубине вспашки, особенно на малых глубинах, которые с увеличением глубины заметно снижаются. Однако по всем показателям установка дисков на высоте ( )см выгоднее, чем при . Судя по вспушенности, при установке дисков на высоте  большие затраты энергии идут на излишнее крошение пласта, которое происходит за счёт сгребания дисками верхнего слоя почвы, что оказывает значительное сопротивление вращению дисков.

Тяговое сопротивление укрывочного плуга с увеличением ширины расстановки дисков растёт. Однако с увеличением глубины копания интенсивность роста тягового сопротивления падает и уже на глубине копания 0,16 м прирост его на каждые 0,10 м прироста ширины расстановки дисков равен 4,5 %, в то время как на глубине 0,11 м он составляет 16,7 %.

Это явление объясняется улучшением продольной устойчивости пласта с увеличением глубины копания. Снижение сопротивления в этом случае достигается увеличением оборотов диска, вызванных подпором пласта.

Изменение тягового сопротивления плуга ПРВН-2,5А от ширины расстановки укрывочных корпусов характеризуется коэффициентом потерь  (табл. 16).

Таблица 16

Значения коэффициента потерь

Общая ширина захвата, см 100 111,25 120 139 163
Коэффициент 1 1,056 1,1 1,2 1,18

Из табл. 16 следует, что укрытие виноградников выгоднее делать при общей выемке. В этом случае тяговое сопротивление укрывочного плуга может определяться с помощью преобразованной рациональной формулы В.П.Горячкина

              ,                       (46)

где  - член, учитывающий усилие на деформацию почвы клином при не свободном резании.

Способ укрытия лозы листерным корпусом с дисковыми пластоукладчиками аналогичен выемочно - насыпным схемам с бермами (рис. 20). Он нормализует в междурядьях полосный структурный ха-

   
   
   
   
   
   
   
   
   
   
   
   

 

Рис. 20. Принципиальная схема укрытия виноградников

при общей выемке

рактер почвы за счёт перемешивания почвы при укрытии и открытии и предупреждает чрезмерное глыбообразование во время укрытия, так как почва на образование вала берётся между колеёю. В этом случае полностью выдерживается температурная защита, соответствующая архитектонике залегания верхнего яруса корневой системы.

Результаты испытаний совместной работы лозоукладывающих и пластоукладывающих рабочих органов приведены в табл. 17 и 18.

Таблица 17

Агротехнические показатели работы

лозоукладчиков и пластоукладчиков

(КубНИИТиМ, протокол 102 - 67)

Показатели, характеризующие

Тип рабочего органа

По агротре-
работу машин усечённый полуконус двух-дуговой бованиям
Ширина уложенного пучка лоз, м 0,20 0,18 0,40
Ширина укрывного вала, м 0,95 0,93 -
Высота укрывного вала, м 0,23 0,27 0,30
Повреждения виноградных кустов, % : а) сломано плодовых лоз 0,0 0,2 10,0
б) сломано рукавов 0,0 0,0 7,0
в) сбито глазков 0,0 0,0 5,0
Не укрыто лоз между столбами 0,2 0,1 -
Не укрыто рукавов, % 0,0 0,0 -
Не укрыто лоз у столбов, % 11,2 9,6 10,0

Таблица 18

Экономические показатели работы лозоукладчиков

(КубНИИТиМ, протокол 102 - 67)

Приспособление Затраты труда, чел/час Затраты средств, руб/га
Лозоукладчик с двумя дугами 20 11,6
Лозоукладчик ПРВН-39000 39,1 15,06
Ручное пришпиливание с машинным укрытием 78,44 25,98

 

Эти показатели подтверждаются хозяйственными испытаниями 1969 года на виноградниках укрывной зоны Северного Кавказа.

Cогласно рис. 4 и 5 и табл. 5 (разд. 2) максимум усиления антропогенных факторов приходится на конец периода весенне - летнего ухода за почвой. К этому времени окончательно сформировываются параметры плужной подошвы, а также несущая способность почвы в колее. Нами установлено, что подошву рациональнее разрушить в последнюю летнюю обработку почвы, а несущую способность почвы в колее, наоборот, усилить. В первом случае - разноглубокой (0,1 + 0,1 м) расстановкой рабочих органов культиваторов типа ПРВН-2,5 и КСГ-5; во втором случае - мульчированием колеи почвой, смещаемой на колею цепными волокушами, смонтированными на болтах стрельчатых лап снизу смежных стоек. Мульчирование надо осуществлять с первой культивации, не нарушая капиллярный механизм, но упаковывать в верхний слой колеи, освободившиеся от воды частицы. К моменту укрытия, благодаря двухслойной обработке, в пахотном горизонте накопится из атмосферы дополнительно до 150 м  воды на 1 га, которая, разрушая подошву и колею снизу, уменьшает тяговое сопротивление укрывщика на 25 ... 30 % [23, 28, 54, 69]. Для разноглубокой обработки автором разработан специальный комбинированный рабочий орган, собранный из стрельчатой лапы (наральника) и левой и правой односторонних бритв культиватора КРН-4,2 на одной стойке. Для бритв с тыльной стороны стоек приваривается стабилизатор из листовой стали s = 10 мм с посадочными местами для стабилизаторов бритвы на 100 мм выше лезвий стрельчатых лап. Двухслойная обработка внедрена на виноградниках Кубани путём модернизации 770 культиваторов ПРВН-2,5.

 

Экономическая оценка,

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

Книги, брошюры, статьи

1. Указания по изготовлению и использованию приспособления для укрытия и раскрытия виноградной лозы. - М.: Изд. МСХ РСФСР, 1959. - 8 с.

2. Указания по изготовлению гидробуров ГБ - 1 для посадки виноградной лозы и установки кольев. - М.:  Изд. МСХ РСФСР,       1959. - 8 с.

3. Указания по переоборудованию опрыскивателей - опыливателей ОКП - 15 и ОНК для обработки винограда. - М.: Изд. МСХ РСФСР, 1959. - 8 с. - Соавт.: Жуков Г.П.

4. Механизированная обработка почвы в рядах виноградника // Сел. хоз. - во Сев. Кавказа. - 1961. - № 1. - с. 57 ... 61. - Соавт.:           Громов Ю.Н.

5. Механизация открывки виноградников //  Сел. хоз. - во Сев. Кавказа. - 1961. - № 3. - с. 64 ... 67.

6. Механизация укрывки виноградников //  Сел. хоз. - во Сев. Кав-  каза. - 1961. - № 10. - с. 70 ... 73. - Соавт.: Громов Ю.Н.

7. Достижения новаторов - в производство // Садоводство. - 1962. - №1. - с. 27 ... 287.

8. Садам и виноградникам - систему машин //  Сел. хоз. - во Сев. Кавказа. - 1962. - № 9. - с. 24 ... 26.

9. Агротехнические указания по виноградарству для Краснодарского края // - Краснодар, 1962. - 95 с. - Соавт.: Серпуховитина К.А., Лазарян В.М., Неговелов С.Ф. и др.

10. Комплексную механизацию в сады и виноградники // Новое в плодоводстве и виноградарстве. - Краснодар, 1963. - с. 64 ... 82.

11. Рекомендации по переводу виноградного куста на одностороннюю полувеерную формировку и механизации его укрытия. - Краснодар: Изд. Сов. Кубань, - 12 с. - Соавт.: Левченко Л.И., Пронь А.С.

12. Для вас, виноградари ( новая техника ) // С. - х. пр. - во Сев. Кавказа и ЦЧО. - 1965. - № 1. - с. 34. Соавт. Румшицкий Т.И.

13. Плодоводство / Бондарев В.А., Драгавцев А.П., Трусевич Г.В. и др. - Краснодар: Кн. Изд., - 1965. - 413 с.

14. Виноградарство / Бондарев В.А., Гриненко В.В., Серпуховитина К.А. и др. - Краснодар: Кн. Изд., - 1965. - 292 с.

15. Механизмы на укрывке винограда // С. - х. пр.. - во Сев. Кавка-за и ЦЧО. - 1965. - № 10. - с. 30 ... 31. Соавт. Левченко Л. И.

16. Влияние почвенно - климатических и агротехнических условий на механизированное укрытие виноградников в Краснодарском крае // - Краснодар, 1966. - с. 86 ... 87.

17. Механизация приготовления, транспортировка и внесение удобрений в почву / Бондарев В.А., Пацюк А.С., Щербина П.А. и др. - М.: МСХ РСФСР, Ярославское кн. Изд., 1966. - 271 с.

18. Виноградниковый укрывочный комплекс // Проблемы садоводства Сев. Кавказа. - Краснодар, 1967. - с. 195 ... 206.

19. К вопросу механизированного укрытия виноградного куста // Сб. работ аспирантов и молодых научных сотрудников СКЗНИИСиВ. - Краснодар, 1968. - с. 350 ... 365.

20. Методика исследования рабочих органов почвообрабатывающих машин на виноградниках // Вопросы методики опытного дела в садоводстве и виноградарстве. - Краснодар, 1968. - с. 135 ... 136. - Соавт.: Пронь А.С.

21. Методика обработки плотнограмм с помощью логарифмической линейки // Вопросы методики опытного дела в садоводстве и виноградарстве. - Краснодар, 1968. С. 137 ... 139.

22. Рекомендации по системе ведения сельского хозяйства Северо - Кавказской зоны. - Нальчик. - Эльбрус, 1969. - 334 с. В соавт.

23. Изыскание и исследование рациональных рабочих органов виноградоукрывочной машины: Автореф. дис. ... канд. техн. наук, - Краснодар, 1970. - 36 с.

24. Пути снижения энергоёмкости и трудоёмкости работ по сохранению виноградной лозы от вымерзания // Факторы повышения продуктивности садов и виноградников. - Краснодар, 1970. -        с. 29 ... 31.

25. Технологические особенности обработки почвы в рядах виноградников укрывной зоны // Исследование и усовершенствование почвообрабатывающих машин. ВИСХОМ, вып. 27. М., 1970. -             с. 350 ... 357. - Соавт.: Пронь А.С.

26. Результаты исследования геометрических характеристик плоскостной шпалеры на виноградниках Краснодарского края // Вопросы технологии и организации труда в виноградарстве. ВНИИСХТ, вып. 16. М., 1971. - с. 52 ... 57.

27. Технологические карты по садоводству / Бондарев В.А., Пронь В.Я., Белянский И.М. - Краснодар, 1971. - 33 с.

28. К вопросу моделирования виноградникового укрывочного плуга ПРВН - 2,5А // Состояние и перспективы развития машин для механизации садоводства и виноградарства. ВИСХОМ, вып. 71. - М., 1972 - с. 200 ... 203.

29. Теория лозоукладывающей поверхности // Пути повышения продуктивности плодовых культур и винограда. - Краснодар, 1972. - с. 376 ... 393. 

30. Обоснование конструкции лозоукладывающего рабочего органа / СНИИСХ, ч. III. - Ставрополь, 1972. - с. 175 ... 178.

31. Физико - механические свойства и архитектоника виноградного куста с односторонней формировкой // Совершенствование конструкций сельскохозяйственных машин, КСХИ, вып. 83 (111). - Краснодар, 1974. - с 172 ... 180. - Соавт.: Кутеницын В.К.

32. Приборы для исследования упругих свойств образцов виноградной лозы // Сельскохозяйственное приборостроение. Агроприбор, № 4. - М., 1974. С. 38 ... 41. - Соавт.: Саченко В.А., Коган - Вольман Г.И.

33. Опыт применения укрывочных машин для равнинного виноградарства на склонах // Освоение неудобных земель в районах, благоприятных для возделывания винограда. ВДНХ. - М., 1974. - с. 36 ...37.

34. Агротехнические указания по плодовым и ягодным культурам для Краснодарского края / Бондарев В.А., Трусевич Г.В., Пронь А.С. и др. - Краснодар, 1974. - 220 с.

35. Агротехнические указания по виноградарству для Краснодарского края / Бондарев В.А., Лазарян В.М., Серпуховитина К.А. и др. - Краснодар, 1974. - 139 с.

36. Виноградарство // Рекомендации по системе ведения сельского хозяйства в Краснодарском крае. - Краснодар, 1976. - с. 238 ... 250, 276 ... 299. - Соавт.: Серпуховитина К.А., Жуков А.И.,     Трюханова А.П.

37. Предпосылки механизации технологического процесса внесения жидких удобрений в многолетних насаждениях Северного Кавказа // Результаты научных исследований в области производства, транспортировки и применения жидких комплексных удобрений. - М.: 1976. - с. 9 ... 11. Соавт.: Ефименко М.П.

38. Роль физико - механических параметров растений в системе стыка машина - растение // Проблемы комплексной механизации процессов в растениеводстве. - М., 1977. - с. 134 ... 137. - Соавт.: Глозман В.И., Галяева Р.М.

39. Типовые перспективные технологические карты возделывания и уборки винограда на 1976 ... 1980 гг. - М., 1977. - Соавт.: Пронь А.С., Белянский И.М.

40. Перспективы механизации внесения жидких комплексных удобрений в многолетних насаждениях // Эффективность применения жидкого аммиака и других жидких комплексных удобрений под основные сельскохозяйственные культуры в различных зонах страны. Ч. II. - М., 1977. - с. 8 ... 9. Соавт.: Ефименко М.П.

41. Определение жёсткости изгиба и напряжения в ветвях // Садоводство. - 1977. - № 3. - с. 20 ... 21. - Соавт.: Галяева Р.М., Коган - Вольман Г.И., Саченко В.А.

42. Агротехнические требования на гусеничный портальный виноградниковый трактор / Бондарев В.А., Паламарчук Г.Д., Антышев Н.М., Ленский А.В. и др. - М., ВИМ, 1977. - 12 с.

43. Методология оценки значимости уровней стыкующихся параметров возделывания многолетних насаждений // Проблемы комплексной механизации процессов в растениеводстве. - М., 1977. - с. 7 ... 9.

44. Теоретический анализ процессов взаимодействия рабочего органа лозоукладчика с виноградной лозой // Состояние и перспективы развития конструкций машин для механизации обрезки кроны, уборки и товарной обработки плодов, ягод и винограда. - М., 1978. - с. 132 ... 138. - Соавт.: Глозман В.М., Коган Вольман Г.И.

45. Результаты исследований в области использования машин для внесения ЖКУ в садах и виноградниках // Новости агротехнической службы. № 21. - М., 1978. С. 38 ... 40.

46. Обоснование оптимальной технологии механизированного внесения ЖКУ в многолетних насаждениях // Использование жидких комплексных удобрений. ЦИНАО . - М., 1979. - с. 79 ... 83. - Соавт.: Ефименко М.П.

47. Временные рекомендации по применению жидких комплексных удобрений в садах и на виноградниках Краснодарского края / БондаревВ.А., Серпуховитина К.А., Чундокова А.А. и др. - Краснодар, 1979. - 36 с.

48. Рекомендации по возделыванию интенсивных садов на Северном Кавказе / Бондарев В.А., Неговелов С.Ф., Попов В.Н. и др. - Краснодар, 1979. - 47 с.

49. Машины для садов / Бондарев В.А., Белянский И.М. - Краснодар, 1979. - 21 с.

50. Рекомендации по технологии применения жидких комплексных удобрений. - М., Колос. 1980. - с. 19... 21. - Соавт.: Ефименко М.

51. Разработка механизированной технологии внесения ЖКУ в многолетних насаждениях // Разработка и внедрение технологий применения ЖКУ в 1976 ... 1980 гг. - Зерноград, 1980. - с. 37 ... 38. - Соавт.: Ефименко М.П.

52. Машины и приспособления для внесения ЖКУ // Сел. Зори. - 1980. - № 10. - с. 19 ... 21. - Соавт.: Ефименко М.П.

53. Перспективные типовые технологические карты возделывания и уборки урожая плодовых и ягодных культур. - М., 1980. - 52 с. - Соавт.: Белянский И.М., Каганович И.М., Коган Е.А. и др.

54. Справочник виноградаря Кубани / Серпуховитина К.А., Левченко Л.И., Бондарев В.А. и др. - Краснодар. 1981. - 189 с.

55. Рекомендации по системе ведения сельского хозяйства в Краснодарском крае. .- Краснодар. 1981. - с. 359, 365, 382.

56. К вопросу внедрения автоматизации в многолетних насаждениях // Автоматизация производственных процессов в растениеводстве. - М., 1982. - с. 128 ... 130.

57. Рекомендации по комплексной защите с. х. культур от вредителей, болезней и сорных растений в Краснодарском крае на 1982 ... 1985 гг. / Бондарев В.А., Серпуховитина К.А., Смольякова В.М. и др. .- Краснодар. 1982. - 171 с.

58. Система машин для интенсивного садоводства // Проблемы интенсификации садоводства на Северном Кавказе. - Новочеркасск, 1982. - с. 75 ... 90. - Соавт.: Ефименко М.П., Белянский И.М. и др.

59. Система земледелия в Краснодарском крае на 1981 ... 1990 гг. .- Краснодар. 1983. - 334 с. - Соавт.: Пронь А.С. и др.

60. Опыт создания машинных технологий в виноградарстве на основе изучения физико - механических свойств растений // Разработка, изготовление и внедрение новой техники для виноградарства. - Кишинёв, 1983. - с. 88 ... 90. - Соавт.: Галяева Р.М.

61. Разработка средств механизации для глубокого внесения жидко-сти в почву // Разработка, изготовление и внедрение новой техники для виноградарства. - Кишинёв, 1983. - с. 136 ... 137. - Соавт.: Ефименко М.П.

62. Совершенствование методов разработки технологических карт для садоводства // Эффективность агротехнических приёмов в интенсивном садоводстве. Т. 38. - Мичуринск, 1983. - с. 133 ... 135. - Соавт.: Букия Т.В., Белянский И.М.

63. Типовая технология применения жидких комплексных удобрений / Бондарев В.А., Артюшин А.М., Рябченко И.К. и др. - М.: Колос, 1983. - 81 с.

64. Методика обоснования оптимальной структуры машинно - тракторного парка в системе машин колхозов и совхозов Краснодарского края / Бондарев В.А., Маслов Г.Г., Шаталов И.М. и др. .- Краснодар. 1984. - 51 с.

65. Основные принципы механизированного ведения культуры винограда и создание на их базе индустриальных технологий // Комплексная механизация возделывания плодовых, ягодных культур и винограда. - М., 1984. - с. 20 ... 24.

66. Перспектива индустриального корневого питания многолетних насаждений // Комплексная механизация возделывания плодовых, ягодных культур и винограда. - М., 1984. - с. 37 ... 40. - Соавт.: Ефименко М.П.

67. Архитектоника виноградного куста и шпалера // Комплексная механизация возделывания плодовых, ягодных культур и винограда. - М., 1984. - с. 43 ... 45. - Соавт.: Галяева Р.М.

68. Проблемные вопросы механизации виноградарства // Проблемы развития виноградарства в Краснодарском крае. - Новочеркасск, 19843. - с. 84 ... 95. - Соавт.: Галяева Р.М.

69. Обработка почвы и укрытие кустов на широкорядных виноградниках // Садоводство. - 1985. - № 5. - с. 21 ... 23.

70. Механизация работ в садоводстве. - М., 1985. - 30 с.

71. Система машин для садоводства // Система садоводства Ставропольского края. - Ставрополь, 1985. С. 169 ... 191. - Соавт.:      Ефименко М.П., Пронь А.С.

72.  Система машин для комплексной механизации садоводства и виноградарства // Система ведения сельского хозяйства в Краснодарском крае. - Краснодар, 1986. - с. 218 ... 223. - Соавт.:       Пронь А.С., Белянский И.М.

73. Проблемы и пути ускорения комплексной механизации садоводства // Пути ускорения научно - технического прогресса в садоводстве. - М., 1987. - с. 71 ... 74.

74. Технология возделывания, транспортировки и переработки технических сортов винограда машинной уборки. / Бондарев В.А., Гугучкина Т.И., Агеева Н.М. и др. - Краснодар, 1988. - 17 с.

75. Новая система крепления виноградных кустов // Садоводство и виноградарство. - 1988. - № 11. - с. 22 ... 23. - Соавт.: Галяева Р.М.

76. Организация уборки, транспортировки и поставки столового винограда на Кубани // Садоводство и виноградарство. - 1988. - № 7. - с. 8 ... 9.

77. В кассетных контейнерах // Сел. Зори. - 1988. - № 2. - с. 55. - Соавт.: Родзиковский И.П., Кирсанова О.В.

78. Контейнерная технология уборки, транспортировки и хранения плодов, ягод и винограда / Рекомендации. - М. Госагропромиздат, 1989. - 17 с.

79. Технология уборки, транспортировки и хранения плодов, ягод и винограда в кассетных контейнерах / Буклет. - М., 1989. - 7 с. 

80. Система многолетнего крепления растений на опоре / Буклет. - М., 1989. - 8 с.

81. Научно - технический прогресс в виноградарстве // Виноградарство и виноделие СССР. - 1989. - № 2. - с. 18 ... 23. - Соавт.:       Серпуховитина К.А.

82. К вопросу индустриализации виноградарства // Виноградарство и виноделие СССР. - 1989. - № 2. - с. 43 ... 49.

83. ВС-20-И. Стойка железобетонная для шпалеры индустриальной СКЗНИИСиВ. ТУ 10 РСФСР 21-01-89 : Утв. Агропром Краснодарского края. - Краснодар, 1989. - 9 с. - Соавт.: Брикалов В.И.

84. Система ведения агропромышленного производства Краснодарского края на 1991 ... 1995 гг. - Краснодар, 1990. - с. 280 ... 301. - Соавт.: Переверзев И.Н., Пронь А.С., Серпуховитина К.А.

85. Система машин для садов // Система садоводства Краснодарского края. - Краснодар, 1990. - с. 192 ... 203. - Соавт.: Пронь А.С., Ефименко М.П.

86. Принципы координации научных исследований по производству и переработке винограда // Виноградарство и виноделие. - 1991. - № 4. - с. 49 ... 50.

87. Комплекс машин для возделывания питомников // Питомник плодовых, ягодных и орехоплодных культур. - Краснодар, 1992. - с. 155 ... 162. - Соавт.: Кузнецов Г.Я., Пронь А.С. и др.

88. Состояние и развитие механизации виноградарства в России // Виноградарство и вино России. - 1993. - с. 18 ... 19.

89. Экономико - математическое моделирование технологий многолетних культур // Моделирование систем и процессов в отраслях АПК России. АФИ. - С.- П., 1993. - с. 18 ... 19.

90. Машины, инструменты и материалы для производственного и любительского садоводства // Садоводство России. - Тверь, 1994. - с. 249 ... 259, 278 ... 281. - Соавт.: Пронь А.С.

91. Создание материально - технической базы виноградарства в России // Механизация и электрификация сельского хозяйства. - 1995. - № 2 ... 3. - с. 5 ... 7.

92. Формирование механизированной технологии оптимального содержания почвы в многолетних насаждениях // Современные проблемы плодоводства. - Самохваловичи, 1995. - с. 20.

93. Сады системы « Рокрас » // Современные проблемы плодоводства. - Самохваловичи, 1995. - с. 85. - Соавт.: Мухин С.А.,                 Луговской А.П.

94. Нетрадиционные способы использования информации, полученной при изучении физико - механических свойств прироста крон многолетних культур // Научно - технический прогресс в инженерно - технической сфере АПК России. - М., 1995. - с. 188 ... 189.

95. Параметры технологии культуры винограда // Виноград и вино России. - 1996. - № 1. - с. 23 ... 24.

96. Механизированная обработка приствольных полос сада в горных условиях // Природно - ресурсный и экономический потенциал горных и предгорных регионов России и принципы создания « устойчивых » агроландшавтов. - Владикавказ, 1996. - с. 333 ... 334.

97. Противоэрозионные технологические процессы и технические средства для садов // Природно - ресурсный и экономический потенциал горных и предгорных регионов России и принципы создания « устойчивых » агроландшавтов. - Владикавказ, 1996. -   с. 346 ... 348. - Соавт.: Пронь А.С., Плахотин В.А. и др.

98. Совершенствование средств механизации для интенсивного садоводства // Научно - технический прогресс в инженерной сфере АПК России. - М., 1996. - с. 192 ... 194.

99. Разработка, производственная проверка и внедрение средств механизации в садоводстве и их результативность // В содружестве с наукой. - Краснодар, 1996. - с. 78 ... 90. - Соавт.: Аманатов Г.Д.

                         АВТОРСКИЕ СВИДЕТЕЛЬСТВА

100. № 104086. Приспособление для пригиба лозы к плугу перед укрытием виноградника / Бюл. № , 1956. - Соавт.: Бубнова В.И.,

Соловьёв А.П.

101. № 133702. Устройство для выкапывания растений , например, маточников плодовых культур / Бюл. № 22, 1960. - Соавт.:             Громов Ю.Н.

102. № 175352. Навесной садовый улавливатель / Бюл. № 19, 1965. - Соавт.: Шумейко Л.Ф., Пронь А.С. и др.

103. № 177696. Лозоукладчик к плугу / Бюл. № 1, 1965.

104. № 204806. Способ укрытия виноградников / Бюл. № 22, 1967.

105. № 214214. Лозоукладчик к плугу / Бюл. № 11, 1968.

106. № 229871. Устройство для калибровки плодов / Бюл. № 33, 1968. - Соавт.: Близнюк В.И., Ахеджак М.Ю.

107. № 289284. Профилограф / Бюл. № 1, 1970. - Соавт.: Пронь А.С., Неговелов С.Ф.

108. № 528051. Сельскохозяйственный трактор / Бюл. № 34, 1976. - Соавт.: Пронь А.С.

109. №  829028. Укладчик в валок плодов / Бюл. № 18, 1981. - Соавт.: Плахотин В.А.

110. № 835334. Устройство для глубокого очагового внесения жидких удобрений в почву/Бюл.№ 21,1981.- Соавт.: Ефименко М.П.

111. № 884626. Краснодарский способ формирования виноградного куста / Бюл. № 44, 1981. - Соавт.: Серпуховитина К.А.,             Гриненко В.В., Галяева Р.М. и др.

112. № 913994. Способ ведения виноградного куста на шпалере               / Бюл. № 11, 1982. - Соавт.: Галяева Р.М., Гриненко В.В.,         Серпуховитина К.А. и др.

113. № 933043. Способ ведения укрывной культуры винограда              / Бюл. № 21, 1982. - Соавт.: Галяева Р.М., Гриненко В.В.,         Серпуховитина К.А. и др.

114. № 982569. Устройство для внесения жидких удобрений в почву / Бюл. № 47, 1982. - Соавт.: Ефименко М.П.

115. № 990136. Способ крепления виноградных лоз / Бюл. № 3, 1983. - Соавт.: Галяева Р.М., Гриненко В.В., Серпуховитина К.А. и др.

116. № 1195952. Опора для виноградного куста / Бюл. № 45, 1985.       - Соавт.: Галяева Р.М.

117. № 1210682. Устройство для обработки почвы в рядах растений / Бюл. № 6, 1986. - Соавт.: Алекперов И.Т., Кулиев Г.Ю. и др.

118. № 1239035. Контейнер для винограда, плодов и ягод / Бюл. № 23, 1986. - Соавт.: Кирсанова О.В., Жеребцов В.П., Курбет С.А.

119. № 1248540. Рабочий орган для обработки почвы в рядах виноградника / Бюл. № 29, 1986. - Соавт.: Алекперов И.Т.,               Агабейли Т.А., Кулиев Г.Ю.

120. № 1250182. Способ борьбы с корневищными сорняками в рядах культурных растений / Бюл. № 30, 1986. - Соавт.: Алекперов И.Т., Агабейли Т.А., Кулиев Г.Ю.

121. № 1256705. Почвообрабатывающее орудие / Бюл. № 34, 1986. - Соавт.: Ефименко М.П., Сычёв Ю.Я.

122. № 1353356. Машина для подрезки побегов растений / Бюл. № 43, 1987. - Соавт.: Алекперов И.Т., Кулиев Г.Ю. и др.

123. № 1429985. Индустриальная шпалера для закрепления виноградных лоз / Бюл. № 38, 1988. - Соавт.: Галяева Р.М.

124. Патент № 1808230. Трактор / Бюл. № 14, 1993. - Соавт.: Кузнецов Г.Я., Ефименко М.П., Шумейко Л.Ф.

125. Патент № 2063677. Способ ведения интенсивного сада / Бюл. № 20, 1996. - Соавт.: Мухин С.А., Луговской А.П.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

 Актуальность проблемы. В механизации многолетних культур на стадии разработки проектов системы машин имеет существенное значение выбор наиболее целесообразных решений как по определению последовательности их включения в технологические схемы, так и предпочтительного их включения в планы конструкторских разработок. При этом обязательно учитывать возможную деградацию среды, которая изначально заложена в культуру: в результате многократного однообразного воздействия на неё среда «стареет» быстрее, чем культура. Поэтому, с каждым новым вегетационным циклом, влияние на культуру накапливаемых средой отрицательных факторов увеличи-вается. В конечном итоге культура входит в неблагоприятные для неё параметры среды значительно раньше своего возрастного состояния. От этого, прежде всего, страдает хозяйственная деятельность общества: накопление отрицательных факторов среды приходится учитывать созданием материально-технической базы (МТБ) с завышенной прочностью. А это ведёт к перерасходу в первые годы насаждения материальных, трудовых и энергетических ресурсов. Особенно это заметно в регионе Северного Кавказа, где сосредоточено около 30% плодово - ягодных культур и 100% виноградников Российской Федерации. Научно обоснованные методы оценки и выбора наиболее выгоднейшего из них для многолетних насаждений до настоящего времени отсутствуют. Применяемые методы проб и ошибок, Паттерн - анализа и группового учёта аргументов используются только для негативного прогноза, чтобы показать, чего не может быть, если всё в Паттерне будет происходить так, как происходит сейчас.

Актуальность исследований заключалась в нахождении метода достоверного прогноза развития уровня механизации садоводства и виноградарства через выявление принципов оптимального стыка средств ухода с постоянно изменяющимися параметрами объектов ухода.

  Исследовательские и конструкторско-технологические работы проводились в СКЗНИИСиВ в соответствии с планами НИР и ОКР на основании заданий Государственного комитета по науке и технике 0.51.02 (проблема 16.01 и 16.14), межотраслевой комплексной программы (0.сх.101 и 2.51.04), а также по прямым договорам с Агропромом СССР, АПК Краснодарского и Ставропольского краёв, Ростовской области и хозяйствами - производителями садово - виноградной продукции.

  Цель работы заключается в обосновании, разработке и использовании научных основ формирования оптимальной материально-технической базы для создания конкретных механизированных технологий многолетних насаждений.

  Объекты исследований. Процесс развития стыка параметров многолетних насаждений, архитектоники крон и средств ухода за ними; физико-механические свойства почв и элементов крон, стыкующихся со средствами ухода; технологии ухода за почвой, системой «шпалера - куст», внесения удобрений, укрывки и открывки виногра-дников, уборки урожая; рабочие органы культиваторов, машин для внесения в почву жидких минеральных удобрений, ухода за кроной и монтажа шпалеры, укрывки и открывки виноградников, уборки урожая.

 Методика исследований. Для выработки основ формирования и управления механизированными технологиями многолетних культур разработан общий научный подход, который исходит из единой стратегии решения глобальной системы методами проектологии: сравнивается совокупность технических средств разного функционального назначения, но используемых в одной и той же отрасли для выработки одного и того же продукта. При этом совокупность технических средств одного и того же функционального назначения рассматривается как самостоятельная система машин, а совокупность систем машин для технологии получения одного и того же продукта , как товара, рассматривается как комплекс систем механизированных технологий [43, 54, 62, 64, 65, 79, 89, 95].

   В основу методики исследований оптимального стыка средств ухода с объектами ухода положен принцип, устанавливающий связи и допустимые пределы внутрисистемного влияния друг на друга свойств среды и средств ухода.

     Исследования средств ухода базировались на положениях земледельческой механики и математической статистики. Лабораторно - полевые эксперименты проводились согласно отраслевым стандартам, дополненных частными методиками и приборами [20, 21, 26, 31, 32, 41, 68, 94].

Разработанная методология использована в ежегодных компаниях заказа техники для садоводства и виноградарства Краснодарского [54, 85] и Ставропольского [71, 72] краёв.

 Научную новизну составляют: 

n методология модульного системного анализа технологий, как инструмент отбора оптимальных агротехнических систем, с последующим их направленным совершенствованием;

n математические модели расчёта: механизированной технологии культуры через тарифные издержки; интенсивности механизированной технологии через алгоритм, характеризующий величину согласованности входящих в технологию компонентов; параметров архитектоники кроны через плодоносность и физико-механические свойства её элементов; параметров выемочно - насыпного профиля почвы в технологии защиты виноградного куста от низких температур через естественные параметры ограничения (упругость пучка лоз, глубину проникновения отрицательных температур и угол естественного откоса насыпного профиля);

n метрология изучения взаимодействия рабочих органов машин с объектами ухода;

n классификация и формализация функциональных отличий насаждений и крон растений на фоне уровней в мировой градации поколений техники, структурно отображающиеся согласованностью, повторяемостью и целесообразностью стыка средств ухода с объектами ухода;

n индустриальные системы «шпалера - куст» для промышленного и индивидуального виноградарства.

Технологические схемы и технические решения защищены 26 авторскими свидетельствами и патентами РФ, 7 из которых отражают новые способы ухода и ведения культур.

Достоверность основных положений, выводов и рекомендаций подтверждены экспериментальными данными лабораторно - полевых исследований, положительными результатами заводских, ведомственных и государственных испытаний рабочих органов, машин, способов и систем, разработанных с участием соискателя.

Практическую ценность работы для многолетних культур представляют:

n методология прогнозирования технического прогресса и обоснование путей совершенствования зональных систем машин;

n метрология и приборы для изучения условий функционирования агрегатов и рабочих органов по уходу за почвой, кроной и шпалерными системами;

n система мероприятий, технологические схемы машин и технические решения по снижению антропогенного влияния на почву механизированных технологий;

n рекомендации и технические решения:

- оптимального стыка технологических систем «крона - шпалера» при различных формах хозяйствования;

- технологии пунктирного глубокого внесения жидких минеральных удобрений, в том числе и в зону ряда;

- технологии защиты растений от низких температур;

- технологии контейнерной уборки, транспортировки и хранения плодов, ягод и винограда.

Реализация результатов исследований. Разработанные единые концептуальные подходы [20, 21, 70, 89, 95, 107] использованы:

n в справочнике виноградаря Кубани [54];

n в совершенствовании методов разработки технологических карт [62];

n в решении проблем развития виноградарства Краснодарского края [68];

n в учебном процессе заочных курсов садоводства [69];

n в системах машин для садов Ставропольского [71] и Краснодарского [85] краёв, садоводства России [90], интенсивного садоводства Северного Кавказа [58], питомников плодовых, ягодных и орехоплодных культур [87], прогнозе развития технического уровня садоводства до 2010 года и анализа его современного состояния в Северо - Кавказском регионе [Агропром CCCР, 1986 г ].

    Разработаны и внедряются технологии:

n уборки, транспортировки и хранения плодов, ягод и винограда в кассетных контейнерах [79];

n возделывания, транспортировки и переработки технических сортов винограда машинной уборки [74];

n применения жидких комплексных удобрений в садах и виноградниках [63];

n по защите виноградников от низких температур [11].

Разработаны и внедряются способы:

n Краснодарский формирования виноградного куста [111];

n ведения виноградного куста на шпалере [112];

n ведения укрывной культуры винограда [113];

n крепления виноградных лоз [115];

n борьбы с корневищными сорняками в рядах культурных растений [120];

n ведения интенсивного сада [125].

Полученные рекомендации внедрены в поставленных на производство машинах - для внесения жидких комплексных удобрений в садах МГУС-2,5 и виноградниках МВУ-2000, автоматической линии для изготовления и затаривания на спецкассеты крепёжных скоб; устройствах - контейнера кассетного для затаривания лотковой первичной тары при уборке, транспортировке, хранении и реализации винограда, плодов, ягод и овощей КПТ-28, стойки железобетонной для шпалеры индустриальной ВС-20-4.ТУ10 РСФСР 21-01-89; приспособления лозоукладывающего ПРВН-39000Э; приборах динамометрических ПТЛ-1, ДТ-1, ДЛ-3, ПУВЛ, ПЛ-50-5, МД-1, ДМЗ-3, разработанных совместно с Одесским филиалом НПО «Агроприбор» для изучения взаимодействия рабочих органов машин с элементами крон древесных растений [32, 41, 44. 68, 94].

Модернизированы и внедрены через мастерские хозяйств виноградниковые плуги - рыхлители ПРВН-2,5, приспособления ПРВН 72000, садовые культиваторы КСГ-5, фрезы ФА-0,76А, рабочие органы для двухслойной обработки почвы в междурядьях, мульчирования колеи и приствольной полосы, плуги - рыхлители ПРВН-2,5 для укрывки лозы почвой, взятой из межколейного пространства междурядий и столбостав ЗСВ-2 для транспортировки контейнеров одновременно в 3 ... 5 междурядьях, обеспечивающие снижение тягового сопротивления агрегатов не менее, чем на 25 % и увеличение производительности труда в 1,5 ... 1,8 раза.

Апробация работы. Основные положения диссертации докладывались на заседаниях Учёного совета СКЗНИИСиВ (1966 ... 1995 г.г.); четырежды - на научно - технических конференциях ВИСХОМ (1970, 1972, 1976, 1985 г.г.); пять раз - на научно - практических конференциях «Научно - технический прогресс в инженерно - технической сфере АПК России» в ВИМ (1992) и ГОСНИТИ (1993, 1994, 1995, 1996); шесть раз - на Всесоюзных научно - технических конференциях в Краснодаре (1977, 1984 г.г.), во Львове (1974 г.), в Каунасе (1982 г.), в Нальчике (1987 г.), в Санкт-Петербурге (АФИ, 1993 г.); дважды - на НТС Госпрома РСФСР (1988 г.); дважды - на Всесоюзных семинарах ВДНХ СССР (1974 г.) и ЦИНАО (1976 г.); четырежды - на научно - методических совещаниях НТО СХ в Орджоникидзе (1979 г.), Зернограде (1980 г.), Кишинёве (1983 г.), Краснодаре (1983 г.); четырежды - на Координационных советах по проблеме О.СХ.61 в Новочеркасске (1984, 1996 г.г.), Тбилиси (1985 г.), Ялте (1991 г.); трижды - на заседаниях секции ВРО ВАСХНИЛ «Комплексная механизация и электрификация растениеводства» в Зернограде (1984, 1985, 1991 г.г.); на заседании Президиума ВРО ВАСХНИЛ (1989 г.).

Методические, технологические, научно - исследовательские и конструкторские разработки демонстрировались на ВДНХ СССР и отмечены 13 медалями, в том числе 2 золотыми.

Публикация результатов исследований. Основное содержание диссертации изложено в 125 научных работах, в том числе - в одном справочнике, трёх методиках, четырёх монографиях, 18 рекомендациях, 7 агроуказаниях, 6 брошюрах и 60 научных статьях общим объёмом 207 п. л., в том числе лично автора 58,8 п.л., а также 26 авторских свидетельствах и патентах.

На защиту выносятся результаты, перечисленные в рубриках «Научная новизна», «Практическая ценность» и «Реализация результатов исследований».

 

СОДЕРЖАНИЕ РАБОТЫ

Анализ состояния проблемы и обоснование задач

Исследований

Моделирование технологий в растениеводстве рассмотрено в работах А.Б.Лурье, М.С.Рунчева, Э.И.Липковича, П.Н.Бурченко, Г.П.Варламова, М.Е.Демидко, В.Я.Зельцера, А.В.Четвертакова, Ю.А.Уткова, А.А.Никонова, Н.Н.Походенко, В.И.Могоряну, Т.Е.Малофеева, А.М.Гатаулина и др. Анализ этих работ показал, что они в принципе аналогичны синтезу системы отображения массива данных через однородные порции, используемого в работах В.А.Вей-ника, Н.П.Бусленко, В.Ф.Венды, Е.Г.Гольштейна, В.В.Налимова, Н.Н.Моисеева, М.П.Перетятькина, И.И.Кандаурова, А.Н.Зеленина, В.И.Баловнева, И.П.Керова, С.Директора, Р.Рорера, Джозефа Р. Шен-филда, Кеннета Кюнена и др.

Указанными исследованиями доказано, что моделированию мо-жет быть подвержена любая проблема любой системы, если массив данных о процессах, протекающих в системе, отобразить через осно-вной процесс, обратные связи и ограничения. Этот принцип был положен в основу разработки комплексов машин. Однако методы отображения информации в конкретных механизированных технологиях до сих пор не носят обобщающего характера. Особенно это относится к технологиям многолетних насаждений, где для сходных условий среды пока управляемыми являются только входные и выходные параметры технологии (размещение растений во время закладки массива, уровень спелости урожая и т. п.), а внутреннее функционирование и развитие составляющих технологии до сих пор остаётся «черным ящиком», т.е. «неоптимизировано и неуправляемо» [43, 65, 70].

Гипотетически проблема состоит в том, что в управлении фун-кционированием технологии недостаточно учтены: многолетность насаждения; неизменность схем посадок, при непрерывном изменении архитектоники крон; изменение свойств среды в результате многократного однообразного циклического воздействия на неё; предельные параметры стыка в системе машина - растение - среда.

Исходя из высказанной гипотезы, потребовалось решить следующие задачи:

n изучить формирование многолетних насаждений в процессе индивидуального и группового развития на фоне мировой градации поколений техники;

n разработать методологию оптимизации управления функционированием и развитием механизированных технологий многолетних насаждений;

n выполнить с помощью разработанной методологии анализ современного состояния и прогноз развития технического уровня садоводства Северного Кавказа и виноградарства Краснодарского края;

n выбрать из массива данных анализа приоритетные направления и с помощью разработанной методологии обосновать оптимальные параметры их механизированных технологий, рабочих органов и машин.

 

2. Исходные предпосылки оптимизации управления

Дата: 2019-07-31, просмотров: 195.