Линейный множественный регрессионный анализ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Регрессионный анализ, по-видимому, наиболее широко используемый метод многомерного статистического анализа. Термин ''множественная регрессия'' объясняется тем, что анализу подвергается зависимость одного признака (результирующего) от набора независимых (факторных) признаков. Разделение признаков на результирующий и факторные осуществляется исследователем на основе содержательных представлений об изучаемом явлении (процессе). Все признаки должны быть количественными (хотя допускается и использование дихотомических признаков, принимающих лишь два значения, например 0 и 1).При поведении экспериментов в множественной ситуации исследователь записывает показания приборов о состоянии функции отклика (y) и всех факторов, от которых она зависит (xi).

При построении регрессионных моделей, прежде всего, возникает вопрос о виде функциональной зависимости, характеризующей взаимосвязи между результирующим признаком и несколькими признаками-факторами. Выбор формы связи должен основываться на качественном, теоретическом и логическом анализе сущности изучаемых явлений. Чаще всего ограничиваются линейной регрессией, т.е. зависимостью вида [2]:

Y=a0+a1x1+a2x2+…+anxn                                   (12)

где Y - результирующий признак; x1, …, xn - факторные признаки; a1,…,an - коэффициенты регрессии; а0 - свободный член уравнения. ai  находим методом наименьших квадратов, для этого рассматривается функции [2]:

 (13)

Находим частные производные по неизвестным переменным, приравниваем к нулю и получаем систему уравнений. Решая систему, можем найти наименьшее значение функции.

Так как запись множественной регрессии (линейной) в матричной форме имеет вид [2]:

Y=X*A,                                      (14)

где Y - это вектор-столбец опытных значений изучаемой характеристики; X –матрица всех значений всех рассматриваемых факторов, полученных при проведении измерений или наблюдений; А – вектор-столбец искомых коэффициентов аппроксимирующего полинома (12) [2]:

Y=  ;                                                                        (15)


X= ;                                                (16)

Y= ;                                     (17)

Тогда функционал F метода наименьших квадратов имеет вид [2]:

 (18)

Для оценки адекватности рассчитанной регрессионной модели вычисляется коэффициент детерминации, он показывает, какая часть дисперсии функции отклика объясняется вариацией линейной комбинации выбранных факторов x1, x2 ,…, xj, xn [2]:

,                                                          (19)

где - прогнозные значения

и множественный коэффициент корреляции [2]:

.                                                                           (20)

 Значение коэффициента множественной корреляции оценивается с помощью таблицы 2 [1]:

 

Таблица Чеддока          Таблица 2

диапазон измерения характер тесноты
слабая
умеренная
заметная
высокая
весьма высокая



Дата: 2019-07-31, просмотров: 177.