Регрессионный анализ, по-видимому, наиболее широко используемый метод многомерного статистического анализа. Термин ''множественная регрессия'' объясняется тем, что анализу подвергается зависимость одного признака (результирующего) от набора независимых (факторных) признаков. Разделение признаков на результирующий и факторные осуществляется исследователем на основе содержательных представлений об изучаемом явлении (процессе). Все признаки должны быть количественными (хотя допускается и использование дихотомических признаков, принимающих лишь два значения, например 0 и 1).При поведении экспериментов в множественной ситуации исследователь записывает показания приборов о состоянии функции отклика (y) и всех факторов, от которых она зависит (xi).
При построении регрессионных моделей, прежде всего, возникает вопрос о виде функциональной зависимости, характеризующей взаимосвязи между результирующим признаком и несколькими признаками-факторами. Выбор формы связи должен основываться на качественном, теоретическом и логическом анализе сущности изучаемых явлений. Чаще всего ограничиваются линейной регрессией, т.е. зависимостью вида [2]:
Y=a0+a1x1+a2x2+…+anxn (12)
где Y - результирующий признак; x1, …, xn - факторные признаки; a1,…,an - коэффициенты регрессии; а0 - свободный член уравнения. ai находим методом наименьших квадратов, для этого рассматривается функции [2]:
(13)
Находим частные производные по неизвестным переменным, приравниваем к нулю и получаем систему уравнений. Решая систему, можем найти наименьшее значение функции.
Так как запись множественной регрессии (линейной) в матричной форме имеет вид [2]:
Y=X*A, (14)
где Y - это вектор-столбец опытных значений изучаемой характеристики; X –матрица всех значений всех рассматриваемых факторов, полученных при проведении измерений или наблюдений; А – вектор-столбец искомых коэффициентов аппроксимирующего полинома (12) [2]:
Y= ; (15)
X= ; (16)
Y= ; (17)
Тогда функционал F метода наименьших квадратов имеет вид [2]:
(18)
Для оценки адекватности рассчитанной регрессионной модели вычисляется коэффициент детерминации, он показывает, какая часть дисперсии функции отклика объясняется вариацией линейной комбинации выбранных факторов x1, x2 ,…, xj, xn [2]:
, (19)
где - прогнозные значения
и множественный коэффициент корреляции [2]:
. (20)
Значение коэффициента множественной корреляции оценивается с помощью таблицы 2 [1]:
Таблица Чеддока Таблица 2
диапазон измерения | характер тесноты |
слабая | |
умеренная | |
заметная | |
высокая | |
весьма высокая |
Дата: 2019-07-31, просмотров: 177.