Расчет взаимного сопротивления в двумерной плоской ФАР
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Изложенный в предыдущем разделе метод определения взаимного сопротивления между излучателями в составе линейной антенной решетки может быть применен и для расчета двумерных плоских ФАР.

Рассмотрим ФАР, изображенную на рис.2.4. Ее можно представить в виде нескольких линейных антенных решеток. Например, излучатели с номерами 0; 0 1; 0 2; 0 3; 0 представляют линейную решетку из параллельных вибраторов (α=90°), а излучатели с номерами 0; 0 0; 1 0; 2 0; 3 – линейную решетку из коллинеарных вибраторов (α=0°), см. рис. 2.5. Для расчета взаимного сопротивления между 0; 0 и 1; 0 излучателем необходимо сначала по (2.4) при фиксированном значении α=90° вычислить несколько значений (N) входного сопротивления излучателя в составе бесконечной решетки, имеющей периоды, которые равны и кратны расстоянию между рассматриваемыми элементами ФАР. Затем согласно процедуре (2.8) следует определить взаимное сопротивление, исходя из полученных N значений входного сопротивления.

Поскольку антенная решетка является эквидистантной, то удобно проводить расчет входного сопротивления по (2.4) не между конкретными парами излучателей, а при фиксированном угловом направлении (например, -см. рис. 2.5), в котором располагается выбранная линейная решетка из нескольких излучателей.

 


 

 

 


Рис. 2.4 Плоская ФАР

 

В этом случае создается массив расстояний, в котором исключаются повторяющиеся периоды, что сокращает число вычислений. Например, рассмотрим линейную решетку 0; 0 1; 0 2; 0 3; 0, расстояние между соседними излучателями составляет . Если рассматривать взаимное сопротивление отдельно между каждой парой излучателей (0; 0 и 0; 1; 0; 0 и 0; 2 и т.д.), то потребовалось бы составить следующие массивы расстояний для каждой пары:

( , 2 , 3 , 6 …) – массив расстояний для пары 0; 0 и 0; 1,

(2 , 4 , 6 , 12 …) – массив расстояний для пары 0; 0 и 0; 2,

(3 , 6 , 9 , 18 …) – массив расстояний для пары 0; 0 и 0; 3.

Если же рассматривать излучатели совместно, то потребуется один массив расстояний, в котором будут исключены повторяющиеся периоды:

( , 2 , 3 , 4 ,6 , 9 , 18  …) – массив расстояний при фиксированном угловом направлении.

Так как излучатели одинаковые, то взаимное сопротивление между 0; 0 и 0; 1 будет равно взаимному сопротивлению между 0; 1 и 0; 2. Взаимное сопротивление между 0; 0 и 0; 2 будет равно взаимному сопротивлению между 0; 1 и 0; 3. Таким образом, при расчете взаимного сопротивления между излучателями ФАР достаточно рассчитать взаимное сопротивление между 0; 0 излучателем и всеми остальными. Взаимное сопротивление между другими парами будет выбираться из ранее рассчитанных значений из условия совпадения угла и расстояния между излучателями.

 

 

 


Рис. 2.5 Представление двумерной решетки в виде нескольких линейных решеток

 

Сделанные выше замечания позволяют создать алгоритм расчета взаимных сопртивлений между излучателями в составе плоской ФАР достаточно универсальным и значительно снижающим вычислительные затраты машинного времени по сравнению с решением задачи напрямую.

 




Дата: 2019-07-31, просмотров: 233.