Обоснование выбора исходных данных для расчёта сцепления
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

1. р0 принимаем равным 0.2 Мпа так как автомобиль Ford Fiesta является легковым и предназначен для города.

2. Максимальный крутящий момент двигателя, Н*м: 204 Н·м [1, данные производителя].

3. Давление между поверхностями трения, кН/м^2: 25 [2, стр.148, таб.6.4], [3].

4. Коэффициент запаса сцепления: 1,8 на основании с ГОСТ 17786-80, для сцепления с ткаными фрикционными накладками [3, стр.63].

5. Число пар трения: 2 (I=2*n=2*1=2, где n=1 число ведущих дисков) [4, стр.50].

6. Число нажимных пружин: 10, взято из среднего значения числа возможного, так как Ford Fiesta относится к машинам небольшой массы [2, стр. 147].

7. Полный вес автомобиля, Н: 16150Н, [1, данные производителя].

8. Расчетный коэффициент трения при проектировании сцепления: 0,3 [3, стр. 63].

9. Передаточное число трансмиссии: 30,56 [1, данные производителя],

( , где передаточное число главной передачи;  передаточное число первой передачи;

10. Полный вес прицепа, Н: 5500 Н [1, данные производителя].

11. Радиус колеса, м: 0,33 м [1, данные производителя].

12. КПД трансмиссии: 0,92 [2, стр. 34].

13. Коэффициент дорожного сопротивления: 0,16 [5].

14. Коэффициент учета моментов инерции колес: 1,06 [5].

15. Масса ведущего диска, кг: 10, так как масса сцепления 12кг минус масса ведомого диска 2кг (по аналогии с ВАЗ-2109) [2, таблица 6.4 стр. 148].

16. Удельная массовая теплоемкость чугуна (стали), Дж/(кг*град): 481,5 (2, стр. 149).

17. Долю теплоты, приходящуюся на рассчитываемую деталь, принимают = 0.5 [3, стр. 53].

20. Допустимая величина износа накладок, м: 0,003м [2, стр. 144].

24. Число ведущих дисков: 1 [2, таблица 6.4 стр. 148].

 

Проведение расчета

 

Таблица 1 – Исходные данные для расчёта сцепления

Угловая скорость коленвала при максимальном моменте, об/мин 2600
Максимальный крутящий момент двигателя, Н*м 106
Давление между поверхностями трения, кН/м^2 25
Коэффициент запаса сцепления 1,65
Число пар трения 2
Число нажимных пружин 10
Полный вес автомобиля, Н 16500
Расчетный коэффициент трения 0,3
Передаточное число трансмиссии 14,54
Полный вес прицепа, Н 5500
Радиус колеса, м 0,33
КПД трансмиссии 0,92
Коэффициент дорожного сопротивления 0,16
Коэффициент учета моментов инерции колес 1,06
Масса ведущего диска, кг 10
Удельная массовая теплоемкость чугуна (стали), Дж/(кг*град) 481,5
Доля теплоты, приходящейся на рассчитываемую деталь 0,5

 

Таблица 2 – Результаты расчета сцепления

Нажимное усилие прижимных пружин, Н 6836
Наружный диаметр ведомого диска, м 0,19
Внутренний диаметр ведомого диска, м 0,13
Средний радиус, м 0,16
Сила сжатия фрикционных дисков сцепления, Н 1643,7
Нажимное усилие одной пружины, Н/м^2 683,6
Работа буксования, кДж 3049
Перепад температур, град 1,8624
Максимальная сила, действующая на нажимную пружину, кН 13,68

 



Расчет коробки передач

 

Коробка передач является агрегатом трансмиссии, преобразующим крутящий момент и частоту вращения по величине и направлению. Предназначена для получения различных тяговых усилий на ведущих колесах при троганнии автомобиля с места и его разгоне, при движении автомобиля и преодолении дорожных препятствий.

 

Алгоритм расчета КПП

1. Определение межосевого расстояния:

,                                       (2.1)

где Ка = 8,6…9,3 – коэффициент для грузовых автомобилей и автобусов.

Мвых – крутящий момент на ведомом валу.

2. Диаметр ведущего вала в шлицевой части:

                                       (2.2)

где Kd – эмпирический коэффициент,

Мemax – максимальный крутящий момент двигателя.

3. Угол наклона β, удовлетворяющий условию εβ = 1, определяют из равенства:

,                                   (2.3)

где mn – нормальный модуль.

4. Найдем уточненное значение угла наклона:

,                         (2.4)

где zΣ – суммарное число зубьев.

5. Число зубьев зубчатых колес:

Z + Zвм = ZΣ                                                                    (2.5)

Zвм / Zвщ = up                                                                      (2.6)

 

где Z– число зубьев ведущего зубчатого колеса

Zвм число зубьев ведомого зубчатого колеса,

ZΣ – суммарное число зубьев,

up – передаточное число от ведущего зубчатого колеса к ведомому.

6. Необходимый момент трения синхронизатора:

,                              (2.7)

где JΣ – суммарный приведенный момент инерции для той части системы, угловая скорость которой изменяется под действием момента .

U – передаточное число от вала, к которому приводится момент инерции, к включенному зубчатому колесу.

 - начальная разность угловых скоростей вала и установленного на нем включенного зубчатого колеса.

7. Время синхронизации:

,                                          (2.8)

где εс – угловое замедление вала, на котором расположен синхронизатор.

 

Дата: 2019-07-30, просмотров: 185.