Рабочие процессы и элементы расчета механизмов автомобиля Ford Fiesta. – Челябинск: ЮУрГУ, АТ-452, 2008г.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Челябинск

2008



АННОТАЦИЯ

Рабочие процессы и элементы расчета механизмов автомобиля Ford Fiesta. – Челябинск: ЮУрГУ, АТ-452, 2008г.

В данном семестровом задании представлены элементы расчета сцепления, КПП, главной и карданной передач, амортизатора, полуоси пружины, рулевого и тормозного механизмов, а также кузова автомобиля Ford Fiesta.



СОДЕРЖАНИЕ

 

Введение. 4

1 Расчёт сцепления.. 5

2 РАСЧЕТ КОРОБКи ПЕРЕДАЧ. 9

3 Расчет карданной передачи.. 13

4 Расчет главной передачи.. 18

5 Расчет полуоси.. 23

6 Расчет рессоры.. 26

7 Расчет амортизатора.. 30

8 Расчет пружины.. 34

9 Расчет рулевого управления.. 36

10 Расчет тормозного управления.. 39

11 Расчет несущей части автомобиля.. 43

Литература.. 46

 



Введение

 

В результате интенсивного совершенствования конструкции автомобилей, более частого обновления выпускаемых моделей, придания им высоких потребительских качеств, отвечающих современным требованиям, возникает необходимость повышения уровня подготовки кадров в сфере Автомобильного транспорта.

Будущий инженер должен иметь представления о современном состоянии и тенденциях развития как автомобилестроения в целом, так и отдельных конструкций автомобилей, уметь оценивать эксплуатационные свойства на основе анализа конструкций моделей автомобилей, определять нагруженность отдельных элементов, чтобы прогнозировать их надежность, а также проводить испытания автомобилей и оценивать их результаты.

Задача раздела «Анализ конструкций и элементы расчета»- дать знания и навыки по анализу и оценке конструкций различных автомобилей и их механизмов, а также по определению нагрузок.

«Анализ конструкций, элементы расчета» подчинено общему принципу: анализ и оценка конструкций дается на базе предъявляемых требований и классификационных признаков, чему соответствует изучение рабочих процессов.



Расчёт сцепления

Сцепление – это механизм трансмиссии, передающий крутящий момент двигателя и позволяющий кратковременно отсоединять двигатель от трансмиссии и вновь их плавно соединять.

 

Алгоритм расчета сцепления

 

1. Расчетный момент сцепления Мс двигателя:

 (1.1)

2. Диаметр ведомого диска:

 (1.2)

где p0=0.2МПа;

m=0.3;

I=2.

3. Внутренний радиус фрикционного кольца .

r= (0.6)R=0.075 м. (1.3)

4. Сумарная сила действующая на ведомый диск.

 (1.4)

4. Удельная работа буксования:

 (1.5)

где Wб – работа буксования определяется из зависимости: ,

где ωд и ωа – угловые скорости соответственно ведущих и ведомых дисков,

Мс(t)- момент трения сцепления.

5. Расчет ведущего диска на нагрев:

 (1.6)

где m н – масса диска,

с- удельная массовая теплоемкость.

6. Нажимное усилие одной витой пружины:

 (1.7)

где Р0 – суммарное усилие оттяжных и отжимных пружин сцепления, Р0 = (0,15-0,25)МПа,

zн – число нажимных пружин.

7. Жесткость пружины:

, (1.8)

где lн – величина износа накладок.

 

Проведение расчета

 

Таблица 1 – Исходные данные для расчёта сцепления

Угловая скорость коленвала при максимальном моменте, об/мин 2600
Максимальный крутящий момент двигателя, Н*м 106
Давление между поверхностями трения, кН/м^2 25
Коэффициент запаса сцепления 1,65
Число пар трения 2
Число нажимных пружин 10
Полный вес автомобиля, Н 16500
Расчетный коэффициент трения 0,3
Передаточное число трансмиссии 14,54
Полный вес прицепа, Н 5500
Радиус колеса, м 0,33
КПД трансмиссии 0,92
Коэффициент дорожного сопротивления 0,16
Коэффициент учета моментов инерции колес 1,06
Масса ведущего диска, кг 10
Удельная массовая теплоемкость чугуна (стали), Дж/(кг*град) 481,5
Доля теплоты, приходящейся на рассчитываемую деталь 0,5

 

Таблица 2 – Результаты расчета сцепления

Нажимное усилие прижимных пружин, Н 6836
Наружный диаметр ведомого диска, м 0,19
Внутренний диаметр ведомого диска, м 0,13
Средний радиус, м 0,16
Сила сжатия фрикционных дисков сцепления, Н 1643,7
Нажимное усилие одной пружины, Н/м^2 683,6
Работа буксования, кДж 3049
Перепад температур, град 1,8624
Максимальная сила, действующая на нажимную пружину, кН 13,68

 



Расчет коробки передач

 

Коробка передач является агрегатом трансмиссии, преобразующим крутящий момент и частоту вращения по величине и направлению. Предназначена для получения различных тяговых усилий на ведущих колесах при троганнии автомобиля с места и его разгоне, при движении автомобиля и преодолении дорожных препятствий.

 

Алгоритм расчета КПП

1. Определение межосевого расстояния:

,                                       (2.1)

где Ка = 8,6…9,3 – коэффициент для грузовых автомобилей и автобусов.

Мвых – крутящий момент на ведомом валу.

2. Диаметр ведущего вала в шлицевой части:

                                       (2.2)

где Kd – эмпирический коэффициент,

Мemax – максимальный крутящий момент двигателя.

3. Угол наклона β, удовлетворяющий условию εβ = 1, определяют из равенства:

,                                   (2.3)

где mn – нормальный модуль.

4. Найдем уточненное значение угла наклона:

,                         (2.4)

где zΣ – суммарное число зубьев.

5. Число зубьев зубчатых колес:

Z + Zвм = ZΣ                                                                    (2.5)

Zвм / Zвщ = up                                                                      (2.6)

 

где Z– число зубьев ведущего зубчатого колеса

Zвм число зубьев ведомого зубчатого колеса,

ZΣ – суммарное число зубьев,

up – передаточное число от ведущего зубчатого колеса к ведомому.

6. Необходимый момент трения синхронизатора:

,                              (2.7)

где JΣ – суммарный приведенный момент инерции для той части системы, угловая скорость которой изменяется под действием момента .

U – передаточное число от вала, к которому приводится момент инерции, к включенному зубчатому колесу.

 - начальная разность угловых скоростей вала и установленного на нем включенного зубчатого колеса.

7. Время синхронизации:

,                                          (2.8)

где εс – угловое замедление вала, на котором расположен синхронизатор.

 

Проведение расчета

 

Таблица 3- Исходные данные КПП

Количество ступеней коробки передач 5
Максимальный крутящий момент на выходном валу, Н*м 1631,7
Радиус качения колеса автомобиля, м 0,33
Передаточное отношение главной передачи 3,9
Угол наклона зубьев зубчатых колёс, град 22
Относительный пробег на 1 передаче 0,01
Относительный пробег на 2 передаче 0,04
Относительный пробег на 3 передаче 0,2
Относительный пробег на 4 передаче 0,75
Относительный пробег на 5 передаче 0,75
Модуль зубчатого зацепления 1 передачи, мм 4,25
Модуль зубчатого зацепления 2 передачи, мм 3,5
Модуль зубчатого зацепления 3 передачи, мм 3,5
Модуль зубчатого зацепления 4 передачи, мм 3,5
Модуль зубчатого зацепления 5 передачи, мм 3,5
Число зубьев ведущей шестерни 1 передачи 14
Число зубьев ведущей шестерни 2 передачи 25
Число зубьев ведущей шестерни 3 передачи 34
Число зубьев ведущей шестерни 4 передачи 43
Число зубьев ведущей шестерни 5 передачи 52
Передаточное отношение 1 передачи 3,67
Передаточное отношение 2 передачи 2,1
Передаточное отношение 3 передачи 1,36
Передаточное отношение 4 передачи 1,00
Передаточное отношение 5 передачи 0,82

 

Таблица 4- Результаты расчета КПП

Межосевое расстояние, мм

106

Рабочая ширина венцов зубчатых колёс, мм

22

Ширина подшипников, мм

24

Осевой размер зубчатой муфты и синхронизатора, мм

78

Осевой размер картера коробки передач, мм

296

Диаметр ведомого вала (в средней части), мм

60

Диаметр промежуточного вала (в средней части), мм

51

Диаметр ведущего вала в шлицевой части, мм

51

Контактное напряжение зубьев 1 передачи, МПа

76,02

Контактное напряжение зубьев 2 передачи, МПа

40,78

Контактное напряжение зубьев 3 передачи, МПа

25,92

Контактное напряжение зубьев 4 передачи, МПа

18,67

Контактное напряжение зубьев 5 передачи, МПа

 

Напряжение изгиба зубьев 1 передачи, МПа

146,1

Напряжение изгиба зубьев 2 передачи, МПа

67,55

Напряжение изгиба зубьев 3 передачи, МПа

36,52

Напряжение изгиба зубьев 4 передачи, МПа

22,83

Напряжение изгиба зубьев 5 передачи, МПа

 

Ресурс коробки передач по контактным напряжениям, тыс.км

115,6

Ресурс коробки передач по усталостным напряжениям, тыс.км

139,3

 



Расчет карданной передачи

 

Карданная передача автомобиля – это механизм трансмиссии, состоящий из одного или нескольких карданных валов и карданных шарниров, предназначенный для передачи крутящего момента между агрегатами, оси валов которых не совпадают или могут изменять свое относительное положение.

 

Проведение расчета

 

Таблица 7 - Исходные данные для расчета карданной передачи

Наружный диаметр сечения вала, мм 70
Внутренний диаметр сечения вала, мм 66
Расстояние между центрами карданов, мм 785
Максимальная скорость движения автомобиля, км/ч 135
Передаточное число от карданного вала к ведущим колёсам 3.9
Радиус качения колеса, м 0,33
Крутящий момент на ведущем валу коробки передач, Н*м 114
Передаточное число коробки передач на низшей передаче 3,67
Момент сопротивления кручения трубы карданного вала, мм^3 0,0141
Коэффициент динамичности 3
Длина трубы карданного вала, м 0,765
Полярный момент инерции сечения, мм^4 0,0048
Модуль упругости при кручении, МПа 85000
Число шлицев 17
Высота зубьев шлицев, м 0,0022
Длина шлицев, м 0,06
Средний радиус поверхности контактов зубьев, м 0,0214
Коэф-т, учитывающий неравномерное распределение нагрузки по зубьям 0,75
Расстояние между серединами игольчатых роликов, мм 47,17
Угол установки карданного вала, град 2
Плечо условно сосредоточенной силы, действующей в середине шипа, м 0,0186
Момент сопротивления сечения шипа, мм^3 0,012
Диаметр шипа крестовины, м 0,0141
Диаметр отверстия в шипе крестовины для смазывания, м 0,000705
Плечо "А" опасного сечения в вилке карданного шарнира, м 0,005
Момент сопротивления изгибу опасного сечения вилки шарнира, мм^3 0,008
Плечо "C" опасного сечения в вилке карданного шарнира, м 0,0023
Момент сопротивления кручению опасного сечения вилки шарнира, мм^3 0,008
Число игл подшипника 22
Диаметр иглы подшипника, мм 2,4
Длина иглы подшипника, мм 10
Частота вращения кард. вала при средней скорости движения а/м, об/мин 2600
Коэффициент прогиба 1,1
Сила действующая на подшипник при расчётном моменте, Н 23523
Поправочный коэф-т, учитывающий угол установки карданного вала 4

 

Таблица 8 - Результаты расчета карданной передачи

Критическая частота вращения коленчатого вала, об/мин 1561
Максимальная частота вращения коленчатого вала, об/мин 4228
Допустимая длина коленчатого вала, мм 452,5
Расчётный крутящий момент на карданном валу на низшей передаче, Н*м 418,4
Напряжение кручения трубы под действием расчётного момента, Па 2,97E+04
Максимальный динамический момент, Н*м 1255
Напряжения кручения трубы под действием динамического момента, Па 8,90E+04
Угол закручивания трубы карданного вала, град 1,35E+04
Напряжение смятия боковых поверхностей шлицев, Па 11,62
Условно сосредоточенная нормальная сила, действующая в середине шипа, Н 8875
Напряжение изгиба шипа крестовины в опасном сечении, Па 1,38E+04
Напряжение среза шипа крестовины в опасном сечении, МПа 57,01
Напряжение изгиба в опасном сечении вилки шарнира, Па 5547
Напряжение среза в опасном сечении вилки шарнира, Па 2552
Динамическая грузоподъёмность подшипника, кН 6,134
Пробег автомобиля до выхода подшипника из строя, тыс.км 158,5

 

Обратившись к [2] можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и данная карданная передача годна к эксплуатации.



Расчет главной передачи

 

Главная передача – механизм трансмиссии автомобиля, преобразующий крутящий момент и расположенный перед ведущими колесами автомобиля.

 

Проведение расчета

 

Таблица 7 - Исходные данные для расчета главной передачи

Длина образующей делительного конуса ( L ), мм 180
Число зубьев ведущей шестерни ( Z1 ) 9
Число зубьев ведомой шестерни ( Z2 ) 32
Угол наклона винтовой линии (BET 1 ), град 51,17
Угол наклона винтовой линии (BET 2 ), град 26,15
Смещение осей ( Е ), мм 31,75
Длина зубьев ведущей шестерни ( B1 ), мм 54
Длина зубьев ведомой шестерни ( B2 ), мм 50
Угол зацепления ( AL ), трад 16
Передаточное число первой передачи ( U1 ) 3,67
Передаточное число раздаточной коробки ( Up ) 2.135
Радиус качения колеса (Ro), мм 330
Коэффициент динамичности ( Kd ) 1,5
Расчётный крутящий момент ( Mtr ), Н*м 114
Максимальный крутящий момент ( Me max ), Н*м 114

 


Таблица 8 - Результаты расчета главной передачи

Радиус средней точки зуба (Rср), мм 41,42
Радиус средней точки зуба (Rср), мм 106,6
Половина угла при вершине начального конуса (DEL1), град 16,13
Половина угла при вершине начального конуса (DEL2), град 76,27
Радиус кривизны зуба (Ro1), мм 27,8
Радиус кривизны зуба (Ro2), мм 129,8
Эквивалентное число зубьев (Ze1) 34,86
Эквивалентное число зубьев (Ze2) 160,6
Торцевой шаг по основанию конуса (Ts1), мм 32,76
Торцевой шаг по основанию конуса (Ts2), мм 23,4
Окружная сила (P1), Н 2,752
Окружная сила (P2), Н 1,07
Осевая сила (Q1), Н 3,462
Осевая сила (Q2), Н 0,456
Радиальная сила (Rs1), кН 2,029
Радиальная сила (Rs2), кН 0,5799
Напряжение изгиба (SIG изг 1), МПа 1,765
Напряжение изгиба (SIG изг 2), МПа 0,4287
Напряжение смятия (SIG см 1), МПа 113,2
Напряжение смятия (SIG см 2), МПа 73,36
Ресурс главной передачи, тыс. км. 1,99E+05

 

Ресурс главных передач до капитального ремонта лежит в пределах 125…250 тыс. км. пробега для легковых автомобилей, следовательно рассчитанная главная передача имеет малый ресурс, но в целом удовлетворяет установленным требованиям.




Расчет полуоси

 

Алгоритм расчета полуоси

 

Для полностью разгруженной полуоси определяют только напряжении кручения.

1. При прямолинейном движении: ,

где R - величина нормальной реакции на внутренний конец полуоси со стороны дифференциала.

m2 - максимальное значение коэффициента перераспределения веса.

G2 – вес, приходящийся на задний мост.

Wк = 0.2·D3 - момент сопротивления при кручении.

2. При динамической нагрузке:

где ,

B -расстояние от середины внешнего опорного подшипника до вертикали проходящей через центр опорной площадки колеса.

L – длина полуоси.

Mдин = 0,5 · Ме · i1 · i0 · kд(1+kб) - максимальный момент, передаваемый полуосью ведущего моста.

Ме - максимальный момент двигателя, Н*м;

i1, i0 - передаточные числа первой и главной передачи ;

Kд - коэффициент динамичности (Kд=1...1,3);

КБ- коэффициент блокировки.

для дифференциала с малым внутренним трением КБ = 0,1...0,2;

повышенного трения КБ = 0,2...0,6

блокированного КБ до 1.



Проведение расчета

 

Таблица 9 - Исходные данные для расчета полуоси

Вес, приходящийся на рассчитываемый мост, Н 7500
Коэффициент перераспределения веса 1,2
Расчётный коэффициент продольного сцепления 0,8
Расчётный коэффициент поперечного сцепления 1
Колея автомобиля, мм 1400
Коэффициент динамичности 1,2
Диаметр полуоси, мм 28
Расстояние от середины внешнего опорного подшипника до вертикали, мм 80
Длина полуоси, мм 605
Радиус колеса, мм 330
Момент подводимый к полуоси, Н*м 114

 

Таблица 10 -Результаты расчета полуоси

Максимальные суммарные напряжения, МПа 225,49
Максимальный угол закручивания, град 0,77121
Ресурс полуоси, тыс. км. 13151

 

Обратившись к [3] можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и данная полуразгруженная полуось годна к эксплуатации.



Расчет рессоры

 

Упругий элемент подвески выполняющий одновременно функции упругого элемента, направляющего устройства и гасящего устройства.

 

Проведение расчета

 

Расчет малолистовой рессоры

 

Таблица 11 - Исходные данные для расчета малолистовой рессоры

Нагрузка на рессору ( Р ), Н 3855
Длина рессоры ( L ), м 0,6
Модуль упругости ( Е ), МПа 201000
Коэффициент увеличения прогиба ( I ) 1,75
Ширина рессоры ( В ), м 0,06
Толщина рессоры ( Н ), м 0,01

 

Таблица 12 - Результаты расчета малолистовой рессоры

Жёсткость рессоры, МПа 0,01108
Статический прогиб, м 0,38639
Напряжение в заделке, МПа 216,33
Объём рессоры, м^3 0,23057
Удельная энергия деформации, Дж/м^3 37141

 

Обратившись к [2] и [3], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям.

 

Расчет амортизатора

 

Амортизатор - упругий элемент подвески.

 

Проведение расчета

 

Таблица 13 - Исходные данные для проектировочного расчета

Коэффициент сопротивления амортизатора при отдаче, кН*с/м 0,6
Коэффициент сопротивления амортизатора при сжатии, кН*с/м 0,1
Скорость перемещения поршня амортизатора, м/с 0,3
Коэффициент теплоотдачи, Вт/м^2*К 0,7
Максимальная температура наружних стенок амортизатора, К 493
Температура окружающей среды, К 297
Коэф-т расхода жидкости, проходящей через калиброванные отверстия 0,09
Плотность жидкости, кг/м^3 0,0007
Длина амортизатора, м 0,39
Время работы амортизатора, с 3200

 


Таблица 14 - Результаты проектировочного расчета

Работа амортизатора, Дж 6,37E+05
Площадь поверхности амортизатора, м^2 0,272
Диаметр амортизатора, м 0,1317
Площадь поршня, м^2 0,0219
Площадь сечения штока, м^2 0,00216
Площадь отверстия клапана отдачи, см^2 2,52E-16
Площадь сечения клапана сжатия, см^2 3,82E-09
Поглощаемая мощность, Вт 198,5

 

Обратившись к [4], можно сделать вывод, что результаты проектировочного расчета удовлетворяют установленным требованиям.

 


Расчет пружины

 

Пружина – упругий элемент подвески.

 

Алгоритм расчета пружины

 

При подборе пружины используются следующие основные зависимости:

Жёсткость пружины:

су = ;

где: G - модуль упругости второго рода;

d - диаметр сечения витка;

D - средний диаметр пружины;

n - число рабочих витков.

Напряжения сдвига:

;

где: Fy - статическая нагрузка;

Полное число витков:

N = n+2.

Средний диаметр пружины:

D = d·(7...12).

 

Проведение расчета

 

Таблица 17 - Исходные данные для расчета пружины

Нагрузка на упругий элемент ( P ), Н 4300
Модуль упругости сдвига, МПа (рекомендуется брать 78000 МПа) 78000
Прогиб пружины ( F ), м 0,00864
Диаметр проволоки ( D ), м 0,15
Число рабочих витков пружины ( I ) 6

 

Таблица 18 - Результаты расчета пружины

Жёсткость пружины, Н/м 0,54697
Полное число витков пружины 8
Средний диаметр пружины, м 1,2

 

Обратившись к [3], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и пружина годна к эксплуатации.



Расчет рулевого управления

 

Проведение расчета

 

Таблица 19 - Исходные данные для расчета рулевого управления

Угол поворота рулевого колеса ( F ), град 740
Угол поворота правого управляемого колеса ( а ), град 38
Угол поворота левого управляемого колеса ( b ), град 38
Радиус рулевого колеса ( R ), м 0,17
Радиус поворота управляемых колёс ( R1 ), м 5,5
Длина траектории поворота ( S ), м 9
Поступательная скорость автомобиля на повороте ( Va ), м/с 7
Усилие прилагаемое к рулевому колесу ( Pk ), кг 16
Рабочий объём силового цилиндра усилителя ( V ), м^3 0,56
Максимальное давление в системе усилителя (Pmax), кг/м^2 0,71
Масса автомобиля, приходящаяся на передние колёса, кг 750
Площадь поршня силового цилиндра, м^2 0,56

Таблица 20 - Результаты расчета рулевого управления

Угловое передаточное число рулевого управления 20
Силовое передаточное число рулевого управления 0,76
Время поворота автомобиля, с 1,25
Эффективность по удельному усилию усилителя, Н/кг 0,00455
Коэф-т удельного объёма силового цилиндра усилителя, м^3/кг 0,005175
Коэффициент мощности силового цилиндра, Н*м 0,2895

 

Обратившись к [2], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и рулевое управление годно к эксплуатации.



Проведение расчета

 

Проектировочный расчет

Таблица 21- Исходные данные для проектировочного расчета тормозного управления

Полный вес автомобиля, Н 16500
Число тормозных механизмов автомобиля 4
Скорость автомобиля, м/с 8,5
Динамический радиус колеса, м 0,33
Нижний предел максимального замедления, м/с^2 8
Расстояние от линии действия разжимных сил до опоры, м 0,1325
Радиус тормозного барабана, м 0,1443
Толщина стенки барабана, м 0,021
Расстояние от центра барабана до оси опоры, м 0,047
Углы охвата фрикционных накладок передних колёс, град 100
Углы охвата фрикционных накладок задних колёс, град 100
Углы несимметричности накладок передних колёс, град 30
Углы несимметричности накладок задних колёс, град 30
Ширина фрикционных накладок передних колёс, м 0,1
Ширина фрикционных накладок задних колёс, м 0,1
Суммарная площадь фрикционных накладок, м^2 0,191
Плечо приложения разжимных сил, м 0
КПД кулачкового привода 0
Эффективная площадь диафрагмы тормозной камеры или цилиндра, м^2 0
Длина приводного рычага кулачкового вала, м 0
Диаметр рабочего тормозного гидро-, пневмо- цилиндра, м 0,0248
Максимальный тормозной момент передних колёс, Н*м 25,038
Максимальный тормозной момент задних колёс, Н*м 25,038


Таблица 22 - Результаты расчета тормозного управления

Необходимые значения тормозных моментов передних колёс, Н*м 880,1
Необходимые значения тормозных моментов задних колёс, Н*м 1787
Разжимные силы передних торм. механизмов (самоприжимная колодка), кН 2095
Разжимные силы передних торм. механизмов (самоотжимная колодка), кН -2095
Разжимные силы задних торм. механизмов (самоприжимная колодка), кН 4254
Разжимные силы задних торм. механизмов (самоотжимная колодка), кН -4254
Максимальное значение давления воздуха (на передних колёсах), кН/м^2 0
Максимальное значение давления воздуха (на задних колёсах), кН/м^2 0
Максимальное значение давления жидкости (на передних колёсах), кН/м^2 4,52E+06
Максимальное значение давления жидкости (на задних колёсах), кН/м^2 9,18E+06
Удельная работа трения, Дж 2,46E+04
Удельная мощность трения, Вт 1,67E+05
Повышение температуры тормозного барабана, град С 0
Повышение температуры передних колёс, град С 1,48E+06
Повышение температуры задних колёс, град С 1,48E+06
Среднее удельное давление между барабаном 0
и тормозными накладками передних колёс, Н/м^2 343,6
и тормозными накладками задних колёс, Н/м^2 343,6
Коэффициент KF 8,64E+04

 

Обратившись к [4], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям.



Проведение расчета

 

Таблица 25 - Исходные данные для расчета несущей части

Колея автомобиля ( В1 ), м 1,400
База автомобиля ( Z ), м 2,200
Нагрузка на ось ( G1 ), Н 7500
Толщина полки профиля ( S ), м 0,004
Высота профиля ( H ), м 0,17
Ширина полки профиля ( В ), м 0,052
Момент сопротивления изгибу ( WX ), м^3 3,73E-05

 

Таблица 26 - Результаты расчета несущей части

Суммарное напряжение, МПа 442,4
Момент инерции сечения при кручении, м^4 6,36E-09
Секториальный момент инерции , м^5 3,10E-07
Максимальный крутящий момент, кН*м 5,25
Изгибающий момент, кН*м 16,5
Угол закручивания рамы, град 6,077

 

Обратившись к [4], можно сделать вывод, что результаты расчета удовлетворяют установленным требованиям и несущая часть (рама) годна к эксплуатации.



Литература

 

1. Автомобили ВАЗ 21213, 21214. Руководство по ремонту и техническому обслуживанию / Под ред. Ю.В. Кудрявцева, М.: РусьАвтокнига, 2004.-304 с.

2. Справочник “Проектирование трансмиссии автомобиля”, под ред. Гришкевича А.И. ,М. :Машиностроение, 1984-272 с., ил.

3. Лукин П.П и др. “Конструирование и расчет автомобиля”, М,: Машиностроение, 1984-376 сю,ил.

4. Осепчугов В.В. Фрумкин А.К. “Автомобиль’ М, :Машиностроение, 1989.-304 с, ил.

5. Справочный материал программы Auto V2.0.

Челябинск

2008



АННОТАЦИЯ

Рабочие процессы и элементы расчета механизмов автомобиля Ford Fiesta. – Челябинск: ЮУрГУ, АТ-452, 2008г.

В данном семестровом задании представлены элементы расчета сцепления, КПП, главной и карданной передач, амортизатора, полуоси пружины, рулевого и тормозного механизмов, а также кузова автомобиля Ford Fiesta.



СОДЕРЖАНИЕ

 

Введение. 4

1 Расчёт сцепления.. 5

2 РАСЧЕТ КОРОБКи ПЕРЕДАЧ. 9

3 Расчет карданной передачи.. 13

4 Расчет главной передачи.. 18

5 Расчет полуоси.. 23

6 Расчет рессоры.. 26

7 Расчет амортизатора.. 30

8 Расчет пружины.. 34

9 Расчет рулевого управления.. 36

10 Расчет тормозного управления.. 39

11 Расчет несущей части автомобиля.. 43

Литература.. 46

 



Введение

 

В результате интенсивного совершенствования конструкции автомобилей, более частого обновления выпускаемых моделей, придания им высоких потребительских качеств, отвечающих современным требованиям, возникает необходимость повышения уровня подготовки кадров в сфере Автомобильного транспорта.

Будущий инженер должен иметь представления о современном состоянии и тенденциях развития как автомобилестроения в целом, так и отдельных конструкций автомобилей, уметь оценивать эксплуатационные свойства на основе анализа конструкций моделей автомобилей, определять нагруженность отдельных элементов, чтобы прогнозировать их надежность, а также проводить испытания автомобилей и оценивать их результаты.

Задача раздела «Анализ конструкций и элементы расчета»- дать знания и навыки по анализу и оценке конструкций различных автомобилей и их механизмов, а также по определению нагрузок.

«Анализ конструкций, элементы расчета» подчинено общему принципу: анализ и оценка конструкций дается на базе предъявляемых требований и классификационных признаков, чему соответствует изучение рабочих процессов.



Расчёт сцепления

Сцепление – это механизм трансмиссии, передающий крутящий момент двигателя и позволяющий кратковременно отсоединять двигатель от трансмиссии и вновь их плавно соединять.

 

Алгоритм расчета сцепления

 

1. Расчетный момент сцепления Мс двигателя:

 (1.1)

2. Диаметр ведомого диска:

 (1.2)

где p0=0.2МПа;

m=0.3;

I=2.

3. Внутренний радиус фрикционного кольца .

r= (0.6)R=0.075 м. (1.3)

4. Сумарная сила действующая на ведомый диск.

 (1.4)

4. Удельная работа буксования:

 (1.5)

где Wб – работа буксования определяется из зависимости: ,

где ωд и ωа – угловые скорости соответственно ведущих и ведомых дисков,

Мс(t)- момент трения сцепления.

5. Расчет ведущего диска на нагрев:

 (1.6)

где m н – масса диска,

с- удельная массовая теплоемкость.

6. Нажимное усилие одной витой пружины:

 (1.7)

где Р0 – суммарное усилие оттяжных и отжимных пружин сцепления, Р0 = (0,15-0,25)МПа,

zн – число нажимных пружин.

7. Жесткость пружины:

, (1.8)

где lн – величина износа накладок.

 

Дата: 2019-07-30, просмотров: 259.