ВЛИЯНИЕ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ НА ВЕРОЯТНОСТЬ ДЕЗАКТИВАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРОВ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Курсовая работа

 

 

ВЛИЯНИЕ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ НА ВЕРОЯТНОСТЬ ДЕЗАКТИВАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРОВ

 

 

Выполнил: Чекан Михаил Григорьевич

 

 



СОДЕРЖАНИЕ

Введение......................................................................................................................................... 3

ГЛАВА I. Основные закономерности сенсибилизированной фосфоресценции в твёрдых растворах органических соединений............................................................................................................ 6

1.1. Явление сенсибилизированной фосфоресценции и триплет-триплетный перенос энергии электронного возбуждения.......................................................................................................... 6

Современные теории межмолекулярного переноса энергии в конденсированных средах 9

1.3. Экспериментально установленные закономерности межмолекулярного триплет-триплетного переноса энергии......................................................................................................................... 19

1.4. Выводы к первой главе....................................................................................................... 28

ГЛАВА II. МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ......................... 30

2.1. Растворители и соединения................................................................................................ 30

2.1.1. Растворители...................................................................................................................... 31

2.1.2. Донор энергии................................................................................................................... 32

2.1.3. Акцепторы энергии.......................................................................................................... 35

2.2. Схема экспериментальной установки и методика получения спектров и измерения параметров кинетики....................................................................................................................................... 39

2.3. Методика определения константы скорости излучательного перехода S0 ← T акцепторов энергии......................................................................................................................................... 44

ГЛАВА III. ВЛИЯНИЕ ДОНОРА НА КОНСТАНТУ СКОРОСТИ ИЗЛУЧАТЕЛЬНОГО ПЕРЕХОДА В МОЛЕКУЛАХ АКЦЕПТОРА......................................................................... 47

3.1. Зависимость константы скорости излучательного перехода триплетных молекул акцептора от концентрации донорно-акцепторной смеси............................................................................ 47

3.2. Изменение времени затухания сенсибилизированной фосфоресценции за счёт константы скорости излучательного перехода в акцепторе...................................................................... 57

Основные результаты и выводы................................................................................................ 63

Список литературы..................................................................................................................... 65



Введение

С проблемой безызлучательного переноса энергии электронного возбуждения исследователям приходится сталкиваться при изучении самых разнообразных систем в таких областях науки как люминесценция, фотосинтез, радиационная физика и химия, биоэнергетика.

Фундаментальные представления о механизмах переноса энергии базируются в основном на классических результатах по фотонике синтетических органических соединений в конденсированных средах [1-4]. Хорошими модельными системами, которые часто используются для экспериментального изучения и проверки выводов теории переноса энергии триплетного возбуждения между молекулами, являются твёрдые растворы органических соединений. Это обусловлено своеобразием их физических свойств и возможностью широкого практического применения [5,6]. К таким средам относятся стекла активированные атомами или ионами, поликристаллические растворы, активированные полимерные пленки.

Основные закономерности межмолекулярного триплет-триплетного переноса энергии были установлены именно при исследовании тушения фосфоресценции молекул донора молекулами акцептора в этих системах. Однако даже для наиболее изученных донорно-акцепторных пар параметры переноса энергии триплетного возбуждения существенно отличаются у различных авторов [5-9].

Квантово – механическая теория триплет-триплетного переноса энергии в конденси­рованных средах была развита в работах Ферстера и Декстера [10,11].

Одним из выводов теории является то, что взаимодействие между компонентами донорно – акцепторной пары не влияет на константы скоростей как излучательной, так и безызлучательной дезактивации возбуждений акцептора. Именно это положение теории Фёрстера – Декстера (наряду с некоторыми другими) подвергается критике в новой теории переноса энергии, разрабатываемой в последнее время В.Я. Артюховым и Г.В. Майером [12-14]. Согласно этой теории взаимодействие между компонентами в донорно – акцепторной паре возмущает электронные состояния изолированных молекул еще до возбуждения молекул донора. При этом можно ожидать изменения константы скорости излучательной дезактивации энергии электронного возбуждения как в молекулах донора, так и в молекулах акцептора.

Наиболее актуальным вопрос о взаимном влиянии компонент донорно – акцепторной смеси на константы скоростей излучательной и безызлучательной дезактивации возбуждений является для межмолекулярного триплет – триплетного переноса энергии, поскольку он происходит при малых расстояниях между компонентами, так как обусловлен обменными взаимодействиями.

Таким образом, изучение механизмов дезактивации триплетных молекул в твердых растворах при их сенсибилизированном возбуждении и определение их вклада в дезактивацию возбуждений имеет актуальное значение для теории и практики межмолекулярного переноса энергии по обменно – резонансному механизму в конденсированных средах и является необходимым этапом дальнейшего развития его теоретических основ.

В связи с этим целью дипломной работы является исследование влияния взаимодействий между молекулами акцепторов в возбужденном триплетном состоянии и молекулами доноров в основном синглетном состоянии на вероятность излучательной дезактивации триплетных возбуждений акцепторов.

В соответствии с этим были поставлены следующие задачи:

- исследование спектров и кинетики сенсибилизированной фосфоресценции молекул аценафтена и нафталина, выбранных в качестве акцепторов, при возбуждении донора – бензофенона;

       - рассмотрение методики определения константы скорости излучательного перехода S0 ← T акцепторов энергии;

- установление зависимости константы скорости излучательного перехода триплетных молекул акцептора от концентрации донорно-акцепторной смеси.



Выводы к первой главе.

Анализ литературы по триплет-триплетному переносу энергии между примесными молекулами в конденсированных средах позволяет сделать следующие выводы. Проблема безызлучательного переноса энергии электронного возбуждения в жидких и твердых телах является одной из фундаментальных проблем физики конденсированного состояния и широко исследуется в течение многих десятилетий. Первый период после открытия Терениным и Ермолаевым межмолекулярного триплет-триплетного переноса энергии характеризуется в основном установлением основных закономерностей этого явления и сопоставлением их с выводами теории Ферстера-Дектстера передачи энергии по обменно-резонансному механизму. Некоторые несоответствия между ними удается устранить уточнением указанной теории не затрагивая ее основ. Однако ряд важных вопросов, связанных с самой природой переноса энергии, остаются открытыми. В частности остаются без ответа такие вопросы: насколько сильно взаимодействие в донорно-акцепторной паре возмущает электронные состояния компонентов, как это возмущение влияет на константы скоростей дезактивации их триплетных возбуждений? Насколько изменение констант скоростей переходов в результате таких взаимодействий сказывается на квантовом выходе и кинетике сенсибилизированной фосфоресценции? Необходимость решения этих вопросов для дальнейшего развития данной области фотофизики конденсированных сред и практического ее применения не вызывает сомнения. Эти вопросы, в общем случае не решены и в новой теории переноса энергии, развиваемой в последнее десятилетие Артюховым и Майером. Хотя одним из основных ее положений является то, что взаимодействие между компонентами в донорно-акцепторной паре возмущает соответствующие электронные состояния компонентов еще до возбуждения молекул донора. Однако, в отличии от теории Ферстера-Декстера, она не исключает влияния этих взаимодействий на вероятность дезактивации триплетных возбуждений.



Растворители и соединения.

Важнейшим источником информации о строении и свойствах молекул и твердых тел являются их оптические спектры [3,44,45]. Для решения поставленных задач особый интерес представляют электронные спектры, поскольку именно в них наиболее отчетливо проявляется связь оптических свойств молекулы (или кристалла) с химическими, фотофизическими и фотохимическими свойствами. Но наиболее важным для нас является то, что электронные спектры оказываются наиболее чувствительными к различного рода внутри- и межмолекулярным взаимодействиям и служат ценным средством исследования взаимодействия молекул между собой и с окружением [2,21,24,46]. Поэтому метод оптической спектроскопии был выбран в качестве одного из основных методов исследования.

В экспериментальных исследованиях триплетных молекул важное место, наряду со спектральными, занимают кинетические методы [1,2,47], то есть изучение процессов заселения и распада возбужденных состояний. Определенные из кинетических экспериментов параметры являются характеристиками, как самих молекул, так и их взаимодействия между собой и с матрицей, в случае примесных центров. Особенно важным является то, что параметры кинетики (время накопления и время дезактивации возбужденных состояний), определяются константами скоростей соответствующих переходов и, следовательно, позволяют извлечь информацию, о путях дезактивации триплетно возбужденных молекул. Этим обусловлена необходимость использования кинетических методов для установления и изучения механизмов дезактивации триплетных состояний органических молекул в твердых матрицах при их сенсибилизированном возбуждении.

Растворители.

В работе исследовались стеклообразные растворы донорно-акцепторных смесей. В стеклах примесные центры распределены по объему образца равномерно, что позволяет исследовать зависимость люминесцентных характеристик как от среднего расстояния между молекулами различных компонент смеси, так и от расстояния между молекулами каждой из компонент в отдельности. В качестве растворителей, замерзающих в виде стекла при быстром охлаждении до 77 К, были выбраны этанол и толуол. Эти растворители широко используются при исследовании триплет-триплетного переноса энергии электронного возбуждения между примесными молекулами при 77К в качестве матриц [1], что позволяло сравнивать измеренные параметры люминесценции с имеющимися в литературе данными.

Этанол дополнительно очищался путем двухкратной перегонки. Обезвоживание его при этом не производилось. Критерием его чистоты являлось отсутствие люминесценции при 77 К.

Толуол использовался марки «ХЧ» или «для спектроскопии». И в том и другом случае он подвергался дополнительной очистке путем однократной перегонки. Критерием его чистоты также служило отсутствие люминесценции при 77 К.

Известно, что толуол при охлаждении либо стеклуется, либо кристаллизуется. Характер его отвердевания определяется скоростью замораживания. Поэтому, прежде всего, были изучены условия, при которых толуол замерзал в виде стекла. Было установлено, что в кювете с толщиной стенок 0,5мм и диаметром 2 мм, толуол всегда стеклуется при быстром погружении его в азот, если не давать образовываться тепловой «рубашке» вокруг кюветы. Последнего условия можно добиться перемещением кюветы в жидком азоте до момента времени, когда температура растворителя станет меньше 100 К. Если же нагревать толуол, затвердевший в виде стекла, от 77К, то при температуре Т=133 К наступает фазовый переход стекло-кристалл. Выбор толуола в качестве основного растворителя, замерзающего в виде стекла, обусловлен высокой растворимостью в нем органических соединений, в том числе и используемых в качестве донорно-акцепторных пар.

Донор энергии.

С учетом требований, предъявляемых к донорно-акцепторным парам в качестве донора энергии был выбран бензофенон. Квантовый выход триплетных состояний бензофенона близок к единице [48]. Фосфоресценция бензофенона в матрицах при низких температурах достаточно хорошо изучена. Основные характеристики донора энергии приведены в таблице 2.1.

Таблица 2.1.

Основные характеристики бензофенона.

Соединение Растворитель Т1-уровень, см –1 S1-уровень, см –1 τ-фосфор., с Источники

Бензофенон

Этанол (90 К) 24250 26000 4,7ּ10 -3 [59]
Этанол (77 К) –– –– 6,2ּ10 -3 [87]
Этанол+эфир (2:1; 77 К) –– –– 5,4ּ10 -3 [87]
Этанол+метил- циклогексан (2:1; 77 К) –– –– 5,0ּ10 -3 [87]

Бензофенон. Люминесцентные и спектральные характеристики бензофенона изучались многими авторами как в конденсированной среде для твердой [49-53] и жидкой фазы [54], так и для молекул в растворах [20,40,49,56] и парах [48,55]. Исследование спектров фосфоресценции при 90К кристаллического и стеклообразного бензофенона, а также его раствора в спиртово-эфирной смеси [49] показало, что структура спектра и распределения интенсивности в нем одинаковы во всех трех случаях. Однако положение максимумов полос их ширина и время затухания фосфоресценции в каждом состоянии были различны, что дает возможность использовать эти параметры для идентификации центров являющихся донорами энергии. Это весьма актуально в данной работе, поскольку бензофенон использовался нами как основной донор энергии. Ниже в таблице 2.2 приведены характеристики фосфоресценции бензофенона в различных его состояниях, взятые из работы [49].

Таблица 2.2.

Характеристики фосфоресценции бензофенона при 90 К в различных его состояниях [49].

Состояние Положение максимума 0-0 полосы, нм Полуширина 0-0 полосы, см –1 Время затухания фосфоресценции, с
Раствор (спирт-эфир) 414 700 4,7ּ10 -3
Кристаллический 416 300-600 ≈ 7ּ10 -4
Стеклообразный 427 700 3,4ּ10 -3

 

Бензофенон [50,54] может существовать в трех твердых модификациях (фазах): стабильной кристаллической (α), нестабильной кристаллической (β) и стеклообразной (х). Спектр фосфоресценции монокристаллов α-модификации и спектр фосфоресценции х-модификации бензофенона [51] в температурном интервале от 77 к до 200 К состоит из одной серии широких полос с характерными для карбоксильной группы С ═ О колебательным интервалом 1640 см –1. Такой же вид имеет спектр растворов [49] бензофенона при 77 К.

Характерную температурную зависимость испытывают квантовый выход и время затухания фосфоресценции α-модификации [51]. При понижении температуры от 200 до 30 К относительный квантовый выход фосфоресценции увеличивается в 2 раза. Аналогичную зависимость в указанном температурном интервале испытывает и время затухания фосфоресценции.

В отличие от β-модификации, квантовый выход х-модификации [51] в интервале от 220 до 4,2 К увеличивается на два порядка. Время затухания фосфоресценции при этом меняется от 10 –4 с при 200 К до 4,8·10 –3 с при 4,2К. Важно отметить, что аморфные пленки бензофенона имеют такой же характер температурной зависимости квантового выхода и времени затухания фосфоресценции, как и образцы х-модификации. Эти результаты необходимо учитывать при проведении температурных и других измерений в концентрированных н.-парафиновых растворах, поскольку в них высока вероятность образования молекулами бензофенона, вытесненными на поверхность кристаллов растворителя, аморфных пленок.

Характерную зависимость от температуры [51] испытывает и положение спектра фосфоресценции х-модификации. Так, при понижении температуры от 220 до 97 К спектр смещается в длинноволновую область на . При дальнейшем понижении температуры до 4,2 К максимум смещается в противоположную, коротковолновую область так же на . В результате при температурах 220 и 4,2 К положение спектров в шкале частот совпадает.

Спектр фосфоресценции β-модификации бензофенона [51] состоит из двух серий. Относительная интенсивность спектров этих серий существенно зависит от температуры. Фосфоресценция центров, ответственных за эти спектры, также заметно отличается. Так, при 77 К времена затухания их фосфоресценции равны 0,11·10 –3 и 2,7·10 –3 с. Эти особенности фосфоресценции β-модификации бензофенона позволяют ее легко идентифицировать и отличить от фосфоресценции одиночных молекул.

Авторами [56] исследована кинетика затухания фосфоресценции бензофенона в различных растворителях при 77 К. При этом были получены следующие значения времени затухания: в этаноле 2 мс, в смеси этанол-эфир (2:1) 5,4 мс, в смеси эфир-метилциклогексан (2:1) 5,0 мс. Ошибка измерений составляла ± 0,2 мс.

Таким образом, люминесцентные характеристики фосфоресценции бензофенона испытывают существенные изменения в зависимости от его агрегатного состояния, от растворителя и условий ее наблюдения. Это дает возможность идентифицировать центры излучения, которые образуются при замораживании концентрированных растворов бензофенона.

Акцепторы энергии.

В качестве акцепторов энергии использовались нафталин, аценафтен. Люминесцентные характеристики этих соединений в матрицах хорошо известны в литературе и приведены в таблице 2.3 со ссылкой на источник. Однако некоторые из них необходимо было уточнить или изучить влияние на них различных факторов (температуры, концентрации, растворителя и т. д.). Необходимость проведения таких исследований обусловлена тем, что методика определения механизмов дезактивации триплетных молекул акцептора при их сенсибилизированном возбуждении включала исследования влияния донора на люминесцентные характеристики молекул акцептора. Чтобы выделить в чистом виде эти изменения люминесцентных характеристик нами были проведены вышеуказанные исследования. Поэтому в таблице 2.3 наряду с литературными данными об основных люминесцентных характеристиках акцепторов, также приведены результаты измерений. Ниже приведены результаты таких исследований для каждого соединения, где также описаны необходимые литературные данные о них, которые не включены в таблицу.

Как видно из таблицы 2.2 и таблицы 2.3 для любой комбинации выбранных донора и акцепторов энергии выполняются требования к донорно-акцепторным парам [1]. А именно:

1. Триплетный уровень всех молекул донора расположен выше соответствующего уровня любой из молекул акцептора, что делает возможным перенос энергии по закону сохранения энергии.

2. Флуоресцентный уровень всех молекул, используемых в качестве донора, лежит ниже соответствующего уровня любой молекулы выбранной в качестве акцептора. Это позволило избирательно возбуждать только донор, не затрагивая молекулы акцептора. При выполнении этого условия исключается также синглет-синглетный перенос энергии из-за неблагоприятного расположения энергетических уровней.

Таблица 2.3.

Основные характеристики акцепторов энергии.

Соединение Растворитель Т1-уровень, см –1 S1-уровень, см –1 τфос, с Источники

 

Нафталин

 

Смесь этанола и диэтилового эфира 21250 31750 2,3 [29]
Толуол –– –– 2,40 Настоящая работа

Аценафтен

Этанол –– –– 2,95 Настоящая работа
толуол –– –– 2,96 Настоящая работа

 

3. Время затухания всех молекул акцепторов в замороженных растворах при 77 К составляет несколько секунд, что на два порядка больше времени затухания фосфоресценции доноров. Благодаря этому, после прекращения возбуждения уже спустя 0,1 с свечение полностью определяется фосфоресценцией акцептора.

Нафталин. Нафталин является одним из наиболее изученных органических соединений, с точки зрения спектральных и люминесцентных характеристик, и широко используется в качестве объекта исследования при изучении фотофизических процессов в молекулах [44,57-59] в том числе и при изучении триплет-триплетного переноса энергии [25]. Именно с использованием его в качестве акцептора энергии было открыто [20], как уже отмечалось, явление триплет-триплетного переноса энергии электронного возбуждения.

Параметры триплетного состояния нафталина в стеклообразных матрицах определялись многими авторами, в том числе и в [1,20]. Константа скорости излучательного перехода согласно [1] равна , по данным работы [30] она равна  с-1. Время затухания фосфоресценции согласно [1] было 2,3 с, в [30] оно равнялось 2,50 с. Определенное нами время затухания фосфоресценции нафталина в стеклообразном толуоле при концентрации раствора СН= 0,05 моль/л было  с. С увеличением концентрации раствора, начиная с 0,1 моль/л, скорость затухания увеличивается. Причиной этому является концентрационное тушение.

Времена затухания фосфоресценции нафталина в различных растворителях для случая, когда влиянием реабсорбции и концентрационным тушением можно пренебречь, приведены в таблице 2.5.

Поскольку при исследовании триплет-триплетного переноса энергии используются высокие концентрации растворов, то актуальной является проблема образования агрегатов различной степени сложности и знание их люминесцентных и спектральных характеристик. Шпольский с сотрудниками [60] показали, что спектры флуоресценции растворов нафталина в н.-гептане, состоящие при малых концентрациях из сравнительно широких молекулярных полос, приобретают при увеличении концентрации свыше 10 –2 моль/л квазилинейчатый характер. Объяснение этого факта построено на предположении, что за спектр флуоресценции, представленный широкими молекулярными полосами ответственны молекулы, «неустроенные» в кристаллической матрице растворителя. Повышение концентрации раствора приводит к агрегации таких молекул. Агрегаты нафталина характеризуются своим собственным спектром поглощения и не люминесцируют. Поэтому при агрегации «неустроенных» молекул, число «устроившихся» молекул в матрице увеличивается относительно «неустроенных» и становится заметным квазилинейчатый спектр. Следует заметить, что наличие агрегатов может существенно изменять люминесцентные характеристики раствора при наличии миграционно-ускоренного тушения [59,61]. Необходимо также учитывать то, что дезактивация возбужденных состояний нафталина может эффективно происходить [62-64] через образование эксимеров и эксиплексов.

Аценафтен. Спектральные и люминесцентные характеристики аценафтена в замороженных растворах при 77 К близки к подобным характеристикам нафталина (таблица 2.3). Аценафтен имеет высокую растворимость в толуоле, использованного нами в качестве основного растворителя. Это позволяло исследовать перенос энергии триплетного возбуждения с его участием в качестве акцептора при малых межмолекулярных расстояниях.

Затухание фосфоресценции аценафтена, по результатам наших исследований, в стеклообразном толуоле при 77 К в интервале концентраций от 0,01 до 0,1 моль/л было экспоненциальным с характерным временем =2,96 с. Увеличение концентрации свыше 0,1 моль/л приводило к падению времени затухания. Как и в случае с нафталином, это было связано с концентрационным тушением.

Эти значения времени затухания фосфоресценции аценафтена, полученные в растворителе, представлены в таблице 2.3.

 

Таблица 3.1

Константа скорости излучательного перехода триплетных молекул нафталина в присутствии бензофенона в толуоле при 77К.

 

Концентрация моль/л

Расстояние в донорно-акцептор­ной паре R, Å

Константа скорости излучательного перехода

0,2 0,3 0,4 0,5 14,0 12,3 11,1 10,3 0,024 0,031 0,039 0,047 0,025 0,028 0,121 0,515

 

В процессе экспериментальных исследований было обнаружено увеличение константы скорости излучательной дезактивации триплетных молекул нафталина при их сенсибилизированном возбуждении, обусловленное взаимодействием между триплетными молекулами нафталина и молекулами бензофенона в основном состоянии. Как видно из таблицы 3.1, это увеличение тем больше, чем меньше расстояние между молекулами в донорно-акцепторной паре (больше концентрация раствора).

Выражение (3.1) записано в предположении, что уменьшение времени затухания фосфоресценции нафталина происходит только за счет роста константы скорости излучательной дезактивации триплетных молекул нафталина. Если же уменьшение времени затухания СФ происходит еще в результате увеличения вероятности безызлучательной дезактивации триплетных молекул нафталина, то значение величины , вычисленное по формуле (3.1), должно быть больше чем . Как видно из таблицы 3.1 для концентраций раствора 0,3 моль/л и меньших значения величин  и  различаются незначительно. Это различие не превышает ошибки эксперимента. Следовательно, можно считать, что уменьшение времени затухания фосфоресценции нафталина при добавлении бензофенона в раствор происходит в этом случае в основном за счет увеличения константы скорости излучательной дезактивации их триплетных состояний. Среднее расстояние между молекулами нафталина в растворе при этом не превышает 15,4 Å.

Для концентраций компонент в эквимолярных растворах больших, чем 0,3 моль/л величина  начинает значительно превышать . Это значит, что при средних расстояниях между молекулами нафталина в донорно-акцепторной смеси меньших, чем 14 Å, существенный вклад в уменьшение времени затухания сенсибилизированной фосфоресценции вносит увеличение константы скорости безызлучательной дезактивации триплетных молекул нафталина.

Была предпринята попытка установить характер зависимости константы скорости излучательного перехода в молекулах нафталина от среднего расстояния между компонентами донорно-акцепторной смеси. Если предположить, что увеличение вероятности излучательного перехода в молекулах акцептора при их сенсибилизированном возбуждении обусловлено обменными взаимодействиями между молекулой донора в основном состоянии и триплетной молекулой акцептора, то можно ожидать, что величина этого изменения будет пропорциональна величине обменных взаимодействий. Величина же обменных взаимодействий пропорциональна плотности перекрываемых электронных облаков, которая экспоненциально убывает на периферии. Это давало основания искать данную зависимость в экспоненциальном виде.

На рис. 3.1 представлена зависимость константы скорости излучательной дезактивации триплетных молекул от среднего расстояния между компонентами донорно-акцепторной пары в координатах .

Рис. 3.1 Зависимость константы скорости излучательной дезактивации триплетных молекул нафталина от расстояния в паре

 

Таблица 3.2

Результаты определения константы скорости излучательной дезактивации триплетных молекул аценафтена, в отсутствие донора энергии (индексы 0 – относятся к нафталину)

 

Концентрация С, моль/л

Заселенность T-уровня отн. ед.

Относительная интенсивность

Константа

Аценафтен Нафталин
0,25 0,28 0,15 0,20 0,0017
0,50 0,24 0,13 0,22 0,0019

 

Как видно из таблицы 3.2 среднее значение константы скорости излучательной дезактивации триплетных молекул аценафтена .

При сенсибилизированном возбуждении экспериментально определялось отношение константы скорости излучательной дезактивации триплетных молекул аценафтена  эквимолярного раствора при их сенсибилизированном возбуждении к значению этой величины  в отсутствие донора ( ).

Результаты этих измерений приведены в таблице 3.3. Там же приведены значения среднего расстояния между молекулами в донорно-акцепторной паре для соответствующих концентраций раствора.

Таблица 3.3

Относительное увеличение  константы скорости излучательной дезактивации триплетных молекул аценафтена при сенсибилизированном возбуждении для различных концентраций раствора ( ).

 

Концентрация компонент в растворе С, моль/л 0,2 0,25 0,3 0,4 0,5
Среднее расстояние между молекулами компонентов смеси Å 14,0 13,0 12,3 11,1 10,3
Относительное изменение константы 2,6 3,4 4,3 6,2 8,0

 

Как видно из таблицы 3.3, присутствие бензофенона в сфере обменных взаимодействий аценафтена увеличивает константу скорости излучательной дезактивации триплетных молекул последнего в несколько раз. Как и в случае с нафталином, это увеличение тем больше, чем меньше среднее расстояние между молекулами компонент донорно-акцепторной смеси. Однако при одинаковом среднем расстоянии между молекулами для пары бензофенон-нафталин и бензофенон-аценафтен в последнем случае константа скорости излучательного перехода  увеличивается в большее число раз.

Чтобы установить характер изменения  от межмолекулярного расстояния в донорно-акцепторной паре бензофенон-аценафтен был построен график зависимости относительного прироста константы скорости  от расстояния между молекулами компонентов в растворе (рисунок 3.2).

Рис. 3.2. Зависимость относительного прироста константы скорости излучательной дезактивации триплетных молекул аценафтена от среднего расстояния между молекулами компонент донорно-акцепторной смеси в толуоле при 77К.

 

На графике по оси абсцисс отложено среднее расстояние  между молекулами бензофенона и аценафтена в стеклообразном толуоле при 77 К, а по оси ординат натуральный логарифм отношения прироста  значения константы скорости излучательной дезактивации триплетных молекул аценафтена  в присутствии молекул бензофенона к ее значению  в отсутствие молекул донора в растворе. Такой выбор системы координат обусловлен предположением, что ожидаемая зависимость константы скорости излучательной дезактивации триплетных молекул акцептора  от среднего расстояния R описывается уравнением (3.2). Действительно, как видно из рисунка 3.2, экспериментальные точки хорошо укладываются на экспоненту (сплошная линия), уравнение которой имеет вид (3.2).

Поэтому для аценафтена можно переписать (3.2)

                                   .                                         (3.2а)

Как и для нафталина константа  для аценафтена равна максимальному изменению величины  при . Графически, путем экстраполяции графика представленного на рисунке 3.2 для аценафтена, когда донором является бензофенон, было получено ее значение равное . Эта величина в пределах ошибки измерения так же совпадает с величиной . Здесь, как и в случае с нафталином,  константа скорости излучательной дезактивации триплетных молекул бензофенона, в отсутствие молекул акцептора в растворе. Таким образом и в данном случае величина  определяется выражением

                                                .                                                      (3.3а)

На основании этих экспериментальных результатов можно выражение (3.4) переписать для аценафтена

                          .                                (3.4а)

Величина  в (3.4) и (3.4а) характеризует быстроту увеличения  с уменьшением среднего межмолекулярного расстояния между компонентами донорно-акцепторной смеси. Ее значения, определенные из графиков рис. 3.1 и рис. 3.2 для нафталина и аценафтена соответственно равны =3,80 нм-1 и =3,65 нм-1.

Если известна величина , то значение  для молекул акцептора, в отсутствие донора можно вычислить, определив экспериментально отношение  и зная константу скорости излучательного перехода для молекул донора . Действительно, разделив обе части уравнения (3.4) на  имеем

                               .                                       (3.5)

Здесь  – константа скорости излучательного перехода в акцепторе, а  – в доноре.

Из (3.5) получаем

                              .                                      (3.6)

Как видно из (3.5), при одном и том же среднем расстоянии между компонентами донорно-акцепторной смеси, относительное изменение константы скорости излучательной дезактивации триплетных молекул акцептора тем больше, чем меньше ее абсолютное значение в отсутствие донора в растворе.

Ниже в таблице приведены значения констант скоростей излучательной дезактивации триплетных молекул нафталина и аценафтена, в отсутствие донора, рассчитанные по формуле (3.6).

Как видно из таблицы 3.4 значение  для нафталина с точностью до  совпадает с ее литературным значением равным . Для аценафтена разброс значений  рассчитанных по формуле (3.6) немного больше, чем для нафталина и отличается от значения определенного по методике описанной выше, с использованием формулы (2.4) не более чем на 20%.

 

Таблица 3.4

Значение константы  для нафталина и аценафтена рассчитанные по формуле (3.6).

 

R, Å 10,3 11,1 12,3 14,0

Нафталин

0,017 0,017 0,016 0,015

Аценафтен

0,009 0,0018 0,0019 0,0023

 

Таким образом, результаты исследования влияния взаимодействия между триплетными молекулами акцептора и молекулами донора в основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в системах для которых . При этом константа скорости излучательного перехода экспоненциально увеличивается с уменьшением среднего расстояния между компонентами донорно-акцепторной смеси.

Таблица 3.5

Время затухания сенсибилизированной фосфоресценции нафталина, определенное экспериментально и рассчитанное по формуле (3.11).

 



Концентрация компонент в растворе, моль/л

Расстояние между молекулами акцептора, Å

Время затухания фосфоресценции, с

СН СБ R τэксп τрасч τ0
0,2 0,2 17,7 2,30 2,30 2,35
0,3 0,3 15,4 2,24 2,23 2,30
0,4 0,4 14,0 1,70 1,98 2,07
0,5 0,5 13,0 0,82 1,39 1,45
0,05 0,5 28,2 2,28 2,29 2,35

 

Как видно из таблицы 3.5, если среднее расстояние между молекулами нафталина больше 1,5 нм, то . Это значит, что в этом случае уменьшение времени затухания сенсибилизированной фосфоресценции нафталина в сравнении с обычной обусловлено увеличением константы скорости излучательной дезактивации триплетных молекул. Когда среднее расстояние между молекулами нафталина больше 1,5 нм, то . Это значит, что при концентрациях молекул нафталина в растворе для которых R<1,5 нм, появляются дополнительные каналы безызлучательной дезактивации его триплетных возбуждений. При таких значениях R создаются благоприятные условия для миграции триплетных возбуждений по молекулам нафталина и становится актуальным миграционно-ускоренное тушение на различного рода тушителях.

Таким образом, для таких соединений как нафталин, у которых вероятность излучательной дезактивации энергии триплетных возбуждений намного меньше вероятности ее безызлучательной дезактивации, вклад роста константы скорости излучательного перехода в изменение времени затухания фосфоресценции акцептора при добавлении донора в раствор невелик. Однако, при концентрациях акцептора в растворе 0,3 моль/л и меньших, различие в кинетике сенсибилизированной фосфоресценции обусловлено именно этим механизмом. Это различие хотя и невелико, но превышает ошибку эксперимента.

Для эквимолярных растворов с концентрацией компонент больших 0,3моль/л, существенный вклад в изменение времени затухания фосфоресценции нафталина вносит миграционно-ускоренное тушение его триплетных состояний. Так для концентраций компонент в растворе 0,5моль/л время затухания сенсибилизированной фосфоресценции нафталина уменьшается в сравнении с временем затухания обычной фосфоресценции только в 1,04 раза за счет роста вероятности излучательного перехода в 2,9 раза и уменьшается в 1,7 раза за счет появления дополнительных каналов безызлучательной дезактивации.

Нами были проведены измерения τэксп, τрасч, τ0 так же и для аценафтена в стеклообразном толуоле при 77 K. Концентрация аценафтена в растворе как при сенсибилизированном, так и при обычном возбуждении равнялась 0,5 моль/л. Концентрация бензофенона при сенсибилизированном возбуждении составляла 0,5 моль/л. Результаты этих измерений приведены в таблице 3.6.


Таблица 3.6

Время затухания обычной τ0 и сенсибилизированной фосфоресценции нафталина, определенное экспериментально τэксп и рассчитанное τрасч по формуле (3.11)

Расстояние между молекулами аценафтена R, Å

Время затухания фосфоресценции, с

τэксп τрасч τ0
13,0 1,55 2,05 2,10

 

Как видно из таблицы 3.6 время затухания сенсибилизированной фосфоресценции аценафтена уменьшается в 1,024 раза за счет увеличения вероятности излучательного перехода в этом случае. Его изменение в результате увеличения вероятности безызлучательной дезактивации триплетных молекул при этом происходит в 1,32 раза. Как видно, при данной концентрации эквимолярного раствора донорно-акцепторной смеси бензофенон-аценафтен, вклад обоих указанных выше механизмов в уменьшение времени затухания сенсибилизированной фосфоресценции в сравнении с обычной различен. Уменьшение времени затухания сенсибилизированной фосфоресценции аценафтена происходит в основном за счет появления дополнительных каналов безызлучательной дезактивации триплетных возбуждений.

 

Курсовая работа

 

 

ВЛИЯНИЕ ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ НА ВЕРОЯТНОСТЬ ДЕЗАКТИВАЦИИ ТРИПЛЕТНЫХ МОЛЕКУЛ АКЦЕПТОРОВ

 

 

Дата: 2019-07-30, просмотров: 227.