Экспериментальные исследования были выполнены на установке, блок схема которой приведена на рис. 2.1. Она позволяла получать и исследовать спектры поглощения и люминесценции, кривые разгорания и затухания фосфоресценции, а также зависимости люминесцентных характеристик изучаемых объектов от температуры.
Экспериментальная установка была собрана на базе монохроматора СДМС с дифракционной решеткой 1200 шт/мм, работающей в первом порядке. Обратная линейная дисперсия равнялась 1,2 нм/мм. Данная решетка позволяла исследовать спектр в диапазоне длин волн от 250 до 700 нм. С помощью монохроматора можно было выделять для исследования вибронные полосы в спектре фосфоресценции молекул, узкие спектральные участки в полосах, а также исследовать суммарную интенсивность свечения без разложения в спектр при работе решетки в нулевом порядке. В некоторых опытах, при работе решетки в нулевом порядке, использовалась комбинация различных фильтров для выделения широкого участка спектра в нужной его области. Блок поворота решетки 2 включал в себя синхронный двигатель СД-54 с редуктором, позволяющим изменять скорость ее вращения в широких пределах. Градуировка монохроматора проверялась по линиям излучения ртутной лампы низкого давления. Исследуемый образец 3 помещался в сосуд Дьюара 4 с жидким азотом, который был расположен в темновой камере 5.
Доноры возбуждались излучением ртутной лампы 6 типа ДРТ – 230 с фильтрами выделяющими линию 365 нм или азотным лазером 7 типа ЛГИ – 21 ( нм) с частотой следования импульсов 100 Гц. Плотность мощности в импульсе для нерасфокусированного луча лазера составляла примерно 10 4 Вт/см 2. Поскольку в таких условиях не исключались двухфотонные процессы, то для контроля проводились опыты при уменьшенной с помощью нейтральных фильтров (металлических сеток) мощности в 10 раз. В некоторых опытах в качестве источника сплошного спектра использовалась ксеноновая лампа ДКСШ-150 с фильтрами выделяющими нужную спектральную область.
При изучении обычной фосфоресценции акцепторов, люминесценция возбуждалась светом ртутной лампы в области 313 и 290 нм.
Рис. 2.1. Спектрофлуориметрическая установка для спектральных и кинетических измерений.
1. Монохроматор СДМС
2. Блок поворота решетки
3. Исследуемый образец
4. Сосуд Дьюара
5. Темновая камера
6. Лампа ДРТ – 230 (или ДКсШ – 150)
7. Азотный лазер типа ЛГИ-21
8. Дейтериевая лампа ДДС-3
9. Электромеханические затворы
10. Электромеханические затворы
11. Реле времени
12. Переносной пульт управления
13. Калибратор импульсных напряжений типа В 1-5
14. Фотоэлектронный умножитель типа ФЭУ-38
15. Двухкоординатный самописец типа Н-307
16. Источник питания фотоэлектронного умножителя
17. Катодный повторитель
Для отделения сенсибилизированной фосфоресценции акцептора от фосфоресценции донора и изучения закона затухания фосфоресценции на различных ее стадиях использовались электромеханические затворы 9 и 10, управляемые с помощью электронных реле времени 11, с применением переносного пульта управления 12. Время срабатывания затворов (перекрывания светового потока) не превышало 5 мс. Электронные реле времени позволяли изменять дискретно задержку времени между началом регистрации и прекращением возбуждения от 0,1 до 30 с. Это давало возможность отделять во времени фосфоресценцию акцептора от фосфоресценции донора в области перекрывания их спектров, даже если интенсивность фосфоресценции донора значительно превышала интенсивность фосфоресценции акцептора. Это также позволяло исследовать кинетику затухания фосфоресценции на различных ее стадиях. Система управления затворами давала возможность формировать световые импульсы возбуждения различной длительности, что было необходимо для изучения зависимости кинетики затухания от продолжительности возбуждения.
Регистрирующая часть установки включала в себя фотоэлектронный умножитель 14 типа ФЭУ-38 и двух координатный самописец 15 типа Н-307 (или запоминающий осциллограф с электронной памятью С 8-13).
В качестве источника питания 16 фотоэлектронного умножителя использовался высоковольтный стабилизированный источник высокого напряжения ВС-2С. Для согласования низкого входного сопротивления самописца и высокого выходного сопротивления фотоэлектронного умножителя использовался катодный повторитель 17, постоянную времени которого можно было изменять и устанавливать одну из следующих величин: 0.01, 0.02, 0.05, 0.1, 1.0, и 2.0 секунды. Для уменьшения случайных шумов при записи спектров, значение постоянной времени было 0.1 с, 1.0 с или 2.0 с и зависело от скорости записи. Кинетические кривые записывались при постоянной времени 0.01 с. Линейность работы усилителя постоянного тока проверялась при помощи калиброванных нейтральных фильтров. Цена деления блока временной развертки самописца проверялась с помощью секундомера выверенного по сигналам точного времени в течение суток. Механическая постоянная времени самописца не превышала 0.03 с. В случае, когда сигнал регистрировался осциллографом, катодный повторитель не использовался.
Величина погрешности при определении времени разгорания и затухания фосфоресценции в секундном диапазоне обуславливалась флуктуациями фототока, нелинейностью усилителя, погрешностью блока временной развертки и механической постоянной самописца. Три последних источника по данным многократных проверок могли дать в сумме систематическую ошибку не более 1%. Для уменьшения влияния флуктуаций фототока измерения повторялись 5-10 раз и случайная ошибка в каждом конкретном случае находилась с использованием коэффициентов Стьюдента [65] при доверительной вероятности 0,90.
При определении относительной заселенности триплетного уровня молекул и константы скорости перехода молекул акцептора из основного состояния в триплетное основной вклад в ошибку вносит случайная ошибка, возникающая при измерении времени разгорания и затухания фосфоресценции. Определенная, с учетом сказанного, абсолютная ошибка при измерении относительной заселенности триплетного уровня молекул акцептора равнялась 0,02 единицы, а для константы скорости перехода молекул акцептора в триплетное состояние 0,01 с –1.
Была исследована кинетика затухания сенсибилизированной фосфоресценции для различных донорно – акцепторных пар в стеклообразных растворителях при 77 К и произведено ее сравнение с затуханием обычной фосфоресценции, в отсутствие донора, при одних и тех же концентрациях акцептора.
2.3 Методика определения константы скорости излучательного перехода S0 ← T акцепторов энергии.
В случае, когда бимолекулярными процессами можно пренебречь, распад триплетных состояний, а следовательно, и затухание фосфоресценции (в отсутствие реабсорбции излучения), происходит по экспоненциальному закону. При выполнении этих условий для обычной фосфоресценции, влияние донора на константы скоростей излучательной и безызлучательной дезактивации триплетных молекул акцептора должно проявляться либо в изменении времени затухания сенсибилизированной фосфоресценции при сохранении экспоненциального характера кинетики, либо в отступлении от экспоненциального закона затухания. Поэтому прежде всего необходимо было экспериментально установить закон по которому происходит затухание сенсибилизированной фосфоресценции для всех систем, используемых в работе, и сравнить время затухания сенсибилизированной фосфоресценции и обычной при одних и тех же концентрациях раствора.
Методика определения константы скорости излучательной дезактивации триплетных молекул акцептора при их сенсибилизированном возбуждении основана на следующих рассуждениях.
Для стационарной квантовой интенсивности (число квантов испускаемых в единицу времени) фосфоресценции можно записать следующее выражение
, (2.1)
где – константа скорости спонтанных переходов молекулы из триплетного состояния на все электронно-колебательные уровни основного состояния; – число триплетных молекул в стационарном режиме.
Доля молекул в триплетном состоянии определяется с учётом времени разгорания и затухания фосфоресценции [17,66-69], и учитывая что число триплетных молекул в условиях стационарного возбуждения можно представить как , где q- доля молекул в триплетном состоянии от общего их числа N, выражение (2.1) перепишется в виде
, (2.2)
Допустим, мы имеем одно вещество с известным значением константы скорости излучательной дезактивации энергии триплетных состояний , а другое вещество, то для которого эту величину необходимо определить. Тогда для отношения их квантовых интенсивностей фосфоресценции согласно (2.2) можно записать
. (2.3)
Величины с индексом 0 относятся к молекулам, для которых константа скорости излучательной дезактивации энергии триплетных возбуждений известна, а величины без индекса относятся к молекулам, для которых знание константы скорости излучательного перехода необходимо определить.
Если взять одинаковые объемы раствора с равными концентрациями обоих веществ и создать условия, при которых все молекулы участвуют в излучении, то (2.3) преобразуется в
. (2.4)
Величины и можно определить экспериментально из кинетики разгорания и затухания фосфоресценции по формуле , предложенной Алфимовым с сотрудниками [70,71].
Величину можно определить графически. Эта величина равна отношению площадей под спектрами фосфоресценции исследуемых соединений , записанных при одних и тех же параметрах экспериментальной установки (спектральная ширина щелей, напряжение на ФЭУ, усиление и т.д.).
Следует отметить, что если даже неизвестны константы скоростей для обоих веществ, то таким образом, с использованием формулы (2.4), можно установить как и во сколько раз они отличаются.
Таким же образом можно определить и константу скорости излучательной дезактивации триплетных молекул акцептора при их сенсибилизированном возбуждении, если она известна для данного соединения при обычном возбуждении, в отсутствие донора. Тогда в формуле (2.4) величины с индексом 0 будут относиться к обычному возбуждению, а без индекса к сенсибилизированному. Следует подчеркнуть, что число молекул акцептора, участвующих в обычной и сенсибилизированной фосфоресценции будет одинаковым при выполнении двух необходимых условий. Первое условие – это необходимость равенства концентраций молекул акцептора в растворе в обоих случаях. Второе условие – это то, чтобы все молекулы акцептора находились в сфере тушения донора, а значит и участвовали в излучении СФ. Выполнения последнего условия можно добиться взяв эквимолярные растворы донорно-акцепторной смеси с суммарной концентрацией компонент, обеспечивающей среднее расстояние между молекулами донора и акцептора не более 1,5 нм.
Ниже изложенная методика была применена для определения констант скоростей излучательной дезактивации триплетных молекул нафталина и аценафтена в присутствии донора энергии – бензофенона.
Дата: 2019-07-30, просмотров: 224.