Расчет нагрузок по отдельным узлам схемы проводится аналогично расчету нагрузок отделений цеха (смотри пункт 1.1). Группы небольших по мощности силовых технологических приемников подключаем через силовые распределительные пункты ШР-1 – ШР-4. Расчетную нагрузку каждого пункта определяем по такой же методике, что и для участков цеха. Расчет сводим в таблицу 7.11.
Силовые пункты и остальные технологические приемники подключаем к распределительным шинопроводам и рассчитываем их расчетную нагрузку вышеизложенным методом.
Наиболее мощные приемники присоединяются кабелем непосредственно к ячейкам РУНН КТП.
Принимаю к установке магистральные шинопроводы типа ШМА 4 - 1250 - 44 - 1У3 на 1250 А ( ТУ 36.18.29.01 - 22 - 88 ) распределительные шинопроводы ШРА 4 - 250 - 32 - 1У3 и шкафы распределительные марки: ШР 11 Шкаф рассчитан на номинальные токи до 400 А и номинальное напряжение до 380 В с глухозаземленной нейтралью трехфазного переменного тока частотой 50 Гц и с защитой отходящих линий предохранителями НПН2-60 (до 63А), ПН2-100 (до 100 А), ПН2-250 (до 250 А), ПН2-400 (до 400А).
7. Компенсация реактивной мощности
Оптимальный выбор средств компенсации реактивной мощности является составной частью построения рациональной системы электроснабжения промышленного предприятия. Распределительное устройство 10 кВ ГПП имеет четыре системы сборных шин. К секции СШ подключены кабельные линии, питающие трансформаторы цеховых ТП и высоковольтных РП. На рисунке 8.1 приведена схема замещения СЭС для расчета компенсации реактивной мощности. В таблице 8.1 приведены исходные данные для схемы электроснабжения, показанной на рисунке 8.1. Здесь обозначено: Sнтi – номинальная мощность трансформатора i-ой ТП; Q1i и Qтi – реактивная нагрузка на один трансформатор i-ой ТП и потери реактивной мощности в нем; Rтрi – активное сопротивление трансформатора i-ой ТП, приведенное к напряжению 10 кВ; Rлi – активное сопротивление i-ой кабельной линии.
Сопротивление трансформатора определяем по формуле:
Rтрi = . (8.1)
Сопротивление кабельной линии определим по формуле:
Rл = Rу · l, (8.2)
где l – длина кабельной линии, км;
Rу – удельное сопротивление кабеля, Ом/км.
Результаты расчётов приведены в таблице 8.1.
Рисунок 8.1 - Схема замещения СЭС
Таблица 8.1 – Расчёт сопротивлений
Трансформаторная подстанция | Sтн, кВА | Q1i, квар | ΔQтi, квар | Rтi, Ом | Rлi, Ом | число тр-ров ТП |
ТП1 | 1000 | 478,92 | 33,92 | 1,22 | 0,38 | 1 |
ТП2 | 1000 | 478,92 | 33,92 | 1,22 | 0,46 | 1 |
ТП3 | 2500 | 1 672,50 | 142,41 | 0,38 | 0,21 | 1 |
ТП4 | 2500 | 1 672,50 | 142,41 | 0,38 | 0,24 | 1 |
ТП5 | 2500 | 1 697,41 | 142,41 | 0,38 | 0,18 | 1 |
ТП6 | 2500 | 1 697,41 | 142,41 | 0,38 | 0,23 | 1 |
ТП7 | 2500 | 1 693,02 | 142,41 | 0,38 | 0,01 | 1 |
ТП8 | 2500 | 1 693,02 | 142,41 | 0,38 | 0,13 | 1 |
ТП9 | 2500 | 1 693,02 | 142,41 | 0,38 | 0,20 | 1 |
ТП10 | 2500 | 1 693,02 | 142,41 | 0,38 | 0,33 | 1 |
ИТОГО | 14 469,75 | 1 207,09 |
Параметры синхронных двигателей приведены в таблице 8.2.
Таблица 8.2 - Параметры синхронных двигателей
Обознач. в схеме | Тип двигателя | Uном, кВ | Рсд.нi, кВт | Qсд.нi, квар | Ni, шт | ni, об/мин | Д1i, кВт | Д2i, кВт |
СД 3200 | СТД | 10 | 3200 | 1600 | 2 | 3000 | 7,16 | 10,1 |
Располагаемая реактивная мощность СД:
Qсд.мi = , (8.3)
где αмi – коэффициент допустимой перегрузки СД по реактивной мощности, зависящий от загрузки βсдi по активной мощности и номинального коэффициента мощности соsφнi.
Примем, что все синхронные двигатели имеют βсд = 0,9, тогда αм = 0,58.
Результаты расчета приведены в таблице 8.2.
Определение затрат на генерацию реактивной мощности отдельными источниками.
Определение удельной стоимости потерь активной мощности от протекания реактивной мощности производим по формуле:
С0 = δ , (8.4)
где δ – коэффициент, учитывающий затраты, обусловленные передачей по электрическим сетям мощности для покрытия потерь активной мощности:
α – основная ставка тарифа, руб/кВт;
β – стоимость 1 кВт∙ч электроэнергии (дополнительная ставка тарифа);
Для 110 кВ: α = 2165,76 руб/кВт год; β= 0,941 руб/кВ∙ч
Км = ∆Рэ/∆Рм = 0,93 – отношение потерь активной мощности предприятия ∆ Рэ в момент наибольшей активной нагрузки энергосистемы к максимальным потерям ∆Рм активной мощности предприятия;
τ – время использования максимальных потерь, ч.
С0 = 1,02×(2165,76×0,93 + 1,04×2198,77) = 4205,69 руб/кВт.
Непосредственное определение затрат на генерацию реактивной мощности:
- для низковольтных БК (0,4 кВ)
З1г.кн = Е·КБКН + С0·ΔРБКН , (8.5)
З1г.кн = 0,223·360000+4205,69·4 = 93502,78 руб/Мвар
- для высоковольтных БК (10 кВ)
З1г.кв = З10 = Е∙КБКВ∙ Кпр.ц + С0∙ΔРБКв , (8.6)
З1г.кв = 0,213·180000+4205,69·4 = 46751,39 руб/Мвар
- для синхронных двигателей
З1г.сдi = С0∙ ; З2г.сдi = С0∙ . (8.7)
Результаты расчета затрат для СД приведены в таблице 8.3.
Таблица 8.3 – Расчёт затрат для СД
Обозначение СД на схеме | Qсд.мi, Мвар | З1г.сдi, руб/Мвар | З2г.сдi, руб/Мвар2 | Rэ.сдi, Ом | Qсдi, Мвар |
СД 3200 | 4,15 | 18820,48 | 8296,39 | 0,21 | 1,56 |
Итого: | 4,15 | - | - | - | 1,56 |
Определение эквивалентных активных сопротивлений ответвлений с ТП, подключенных к 1-ой секции СШ ГПП. Для расчета оптимальной реактивной мощности, генерируемой низковольтными БК, необходимо знать эквивалентные сопротивления соответствующих ТП.
Эквивалентные сопротивления для СД:
Rэ.сд = , (8.8)
Результаты расчётов приведены в таблице 8.4.
Таблица 8.4 – Выбор конденсаторных установок
Место установки БК | Rэi, Ом | Qсi, Мвар | Qкi, квар | Qкi+ Qсi, квар | Тип принятой стандартной БК | Qстi, квар | |
Расчетное | Принятое | ||||||
ТП1 | 1,60 | 0,16 | 0,16 | 0,00 | 164,61 | УК9-0,4-112,5 У3 УКМ58М-0,4-50-25 У3 | 162,5 |
ТП2 | 1,68 | 0,18 | 0,18 | 0,00 | 181,79 | УКМ58М-0,4-150-37,5 У3 УК1(2)-0,4-37,5 У3 | 187,5 |
ТП3 | 0,59 | 0,87 | 0,87 | 907,75 | 1773,55 | 2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-536-67 У3 УК1(2)-0,4-37,5 У3 | 1779,5 |
ТП4 | 0,62 | 0,91 | 0,91 | 907,75 | 1822,18 | 2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-300-50 У3 | 1826 |
ТП5 | 0,55 | 0,84 | 0,84 | 618,76 | 1457,07 | 2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-250-50 У3 | 1506 |
ТП6 | 0,61 | 0,92 | 0,92 | 618,76 | 1540,15 | 2хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-300-50 У3 УК2-0,4-66,7 У3 | 1543,5 |
ТП7 | 0,39 | -0,23 | 0,00 | 2065,6 | 2065,6 | 3хУКМ58М-0,4-603-67 У3 УКМ58М-0,4-200-50 У3 | 2009 |
ТП8 | 0,50 | 0,23 | 0,23 | 2065,6 | 2158,6 | 4хУКМ58М-0,4-536-67 У3 | 2144 |
ТП9 | 0,57 | 0,23 | 0,23 | 348,87 | 2297,5 | 4хУКМ58М-0,4-603-67 У3 | 2412 |
ТП10 | 0,71 | 0,41 | 0,41 | 348,87 | 2479,5 | 4хУКМ58М-0,4-603-67 У3 | 2415 |
ГПП | - | 4,64 | 4,64 | - | - | УКЛ-10,5-4500 | 4500 |
ИТОГО | - | - | 64,625 | 11316 | 20541,8 | - | 20482 |
Эквивалентные сопротивления для ТП 1-4,5,6, питающихся по радиальной линии (рисунок 8.2, а), определим по формуле:
Rэ = Rл + Rтр. (8.9)
Для питающихся по магистральной линии ТП 7,8, введем обозначения:
r01 = Rл1 ; r12 = Rл2 ;
r1 = Rтр1 ; r2 = Rтр2 ;
Эквивалентная проводимость точки 1 схемы (рисунок 8.2,б) определяется по формуле:
, (8.10)
С учетом полученного, эквивалентные сопротивления присоединений указанных ТП определяются по формулам:
Rэ1 = , (8.11)
Rэ2 = . (8.12)
Значения эквивалентных сопротивлений записываем в таблицу 8.4.
Определение реактивной мощности источников, подключенных к 1-ой секции СШ 10 кВ ГПП. Оптимальные реактивные мощности низковольтных БК, подключенных к ТП, определяем в предположении, что к этим шинам ГПП подключена высоковольтная БК (при этом коэффициент Лагранжа λ = З10):
Qсi = Q1i + ΔQтi + Q1i + ΔQтi + , (8.13)
где а = 1000/ =1000/10 = 10 кВ-2
Мвар∙Ом.
Результаты расчета мощностей Qсi низковольтных БК сводим в таблицу 8.4.
Реактивные мощности СД:
Qсд = .
Результаты расчётов приведены в таблице 8.3.
Определение мощности высоковольтной БК, подключаемой к СШ 10 кВ ГПП, производим из условия баланса реактивных мощностей на СШ 10 кВ ГПП:
Q0 = , (8.14)
Q'эс = α ∙ Рр , (8.15)
Q'эс = 0,31 · 22,8 = 6,94 МВар,
Qр = 2 · Qр1 = 2 · +Qад+ Qэту, (8.16)
Qр = 2 ·((13,143+1,207)+1,26) = 27,7 МВар,
Q''эс = Qр − , (8.17)
Q''эс = 27,72 − = 20,89 МВар,
Qэс1 = МВар,
Qр1= МВар,
Qсi=4,625 МВар.
Подставим все найденные значения в формулу (8.14):
Q0 = 13,86 −4,625 − 1,17 − 3,47 = 4,6 Мвар > 0
Баланс реактивной мощностей на сборных шинах 10 кВ главной понизительной подстанции проверятся как равенство генерируемых Qг и потребленных Qр реактивных мощностей:
Qрi = , (8.18)
Qг1 = , (8.19)
Qг1 =( 4,625 + 1,17 + 4,5+3,47)= 13,76 МВар,
Qр = 13,76 МВар.
Погрешность составляет 0,73%
Значение коэффициента реактивной мощности tgφэ, заданного предприятию энергосистемой:
tgφэ = , (8.20)
tgφэ =
Зная величины мощностей конденсаторных компенсирующих устройств, определяем расчетный коэффициент реактивной мощности на вводе главной понизительной подстанции:
tgφр = , (8.21)
tgφр = .
Резерв реактивной мощности:
Qрез% =
8. Релейная защита синхронного эл. двигателя 10кВ мощностью Р=3200 кВт
Исходные данные:
Тип СТД - 3200/10000 напряжение Uн = 10000 В ток Iн = 208 А пусковой коэф. Кпуск = 5,0 КПД h = 97,3 % Коэф. мощности cos j = 0,89 Тип ТТ ТЛК-10 коэф. тр-ции 300/5 соединение тр-ров тока в полную звезду Сердечник типа «Р»
Согласно ПУЭ на электродвигателях устанавливаются следующие виды защит:
- защита от многофазных и витковых замыканий в обмотке статора;
- защита от перегруза;
- защита от однофазных замыканий на землю;
- защита минимального напряжения;
- защита от асинхронного режима.
Для обеспечения выполнения функций релейной защиты, автоматики, а также управления и сигнализации применяю устройство микропроцессорной защиты «Сириус-21-Д»
Устройство «Сириус-21-Д» является комбинированным микропроцессорным терминалом релейной защиты и автоматики.
Применение в устройстве модульной микропроцессорной архитектуры наряду с современными технологиями поверхностного монтажа обеспечивает высокую надежность, большую вычислительную мощность и быстродействие, а также высокую точность измерения технических величин и временных интервалов, что позволяет снизить ступени селективности и повысить ступени терминала.
8.1 Защита от многофазных и витковых замыканий в обмотке статора (первая ступень МТЗ)
Многофазные и витковые повреждения происходят довольно редко, и как правило, являются результатом развития замыкания на корпус, из-за местных перегревов изоляции, дефектов активной стали статора. Двойные замыкания возникают при уже имеющимся замыкании на землю в сети, при этом второй пробой чаще всего происходит в коробке выводов или на первых витках обмотки. Многофазные короткие замыкания могут быть на выводах обмотки статора или внутри электродвигателя. Опасность внутренних повреждений заключается в том, что токи, протекающие в месте повреждения, могут многократно превышать токи в обмотке статора при повреждении на линейных выводах. Мощная дуга, возникающая в месте КЗ, приводит к пожару в электродвигателе, уничтожающему значительную часть обмотки. Многофазные КЗ, происходящие в близи линейных выводов статорной обмотки, вызывают резкое снижение напряжения на зажимах всех электродвигателей, питающихся от тех же шин, и могут вызвать значительные динамические воздействия на обмотки статоров неповрежденных электрических машин.
Определение токов внутренних КЗ достаточно сложно, т.к. внутри машины образуются несколько контуров, электрически и магнитно-связанных друг с другом. По этому в условиях эксплуатации чувствительность защит от многофазных КЗ определяется при повреждениях на линейных выводах электродвигателя и должна быть, как для основной защиты, больше 2,0 при минимально возможном токе двухфазного КЗ.
Токовая отсечка
В соответствии с ПУЭ для защиты электродвигателей от многофазных КЗ в случаях, когда не применяются предохранители, должна предусматриваться токовая отсечка без выдержки времени, отстроенная от пусковых токов при выведенных пусковых устройствах, с реле прямого или косвенного действия, выполненная: для электродвигателей мощностью менее 2000 кВт в виде одно-релейной отсечки, включенной на разность токов двух
фаз; для электродвигателей мощностью от 2000 кВт до 5000 кВт в виде двух релейной отсечки при условии, что на этих электродвигателях установлена защита от однофазных или двойных замыканий на землю с действием на отключение.
При отсутствии защиты от замыкания на землю или защиты от двойных замыканий на землю токовая отсечка выполняется трех релейной с тремя трансформаторами тока.
Для электродвигателей мощностью 5000 кВт и более, а также для электродвигателей мощностью менее 5000 кВт, если установка токовых отсечек не обеспечивает выполнения требуемой чувствительности и выведены нулевые вывода, должна предусматривается продольная дифференциальная токовая защита в двухфазном исполнении при наличии защиты от замыкания на землю или в трехфазном исполнении с тремя ТТ при невозможности установки защиты от замыкания на землю.
Чувствительность защит и отсечек определяется при КЗ на линейных выводах электродвигателя и должна бить не менее 2,0 в минимальных условиях работы сети.
Ток срабатывания реле выбирается по условию отстройки от максимального тока в режиме пуска электродвигателя при номинальном напряжении сети
,
где котс = 1,2 - коэффициент отстройки, учитывающий погрешности ТТ и защиты;
Ксх = 1 – коэффициент схемы, для ТТ соединённых по схеме полной звезды;
I”max – наибольшее действующее значение периодической составляющей тока внешнего трехфазного металлического КЗ или тока, протекающего через ТТ защиты в режиме самозапуска.
Для двагателя мощностью более 2МВт
А.
Ток срабатывания реле:
А.
Так как уставка (МТЗ-1) может быть выбрана в диапазоне от 2 до 200 А с дискретностью 0,01 А, то принимаем Iуст = 20,8 А.
Коэффициент чувствительности:
.
Выбранная уставка проходит по коэффициенту чувствительности.
Дата: 2019-07-30, просмотров: 259.