Наполнители пластмасс, влияние на свойства пластмасс.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

284. Пластификаторы пластмасс. Пластификаторы – это в-ва, добавляемые к полимеру для повышения его высокоэластичности и уменьшения хрупкости. Мгут использоваться некоторые низкомолекулярные высококипящие жидкости. Молекулы жидкости, проникая между звеньями цепей полимера, увеличивают расстояние и ослабляют связи между ними. Это и приводит к уменьшению вязкости полимера.

285. Стабилизаторы пластмасс. Добавки, называемые стабилизаторами способствуют сохранению и свойств пластмасс во времени, предотвращая их раннее старение при воздействии солнесчного света, кислорода воздуха, нагрева и других неблагоприятных влияний.

286. Полимеры, классификация по составу основной цепи. По составу основной цепи макромолекул:

1) Карбоцепные полимеры, молекулярные цепи которых содержат лишь атомы углерода (полиэтилен, полиизобутилен и т.п.)

2) Гетероцепные полимеры, в состав молекуулярных цепей которых входят кроме атомов углерода атомы кислорода, серы, азота, фосфора (эпоксидные, полиуретановые, полиэфирные полимеры и т.п.)

3) элементоорганические полимеры, в основных молекулярных цепях которых содержатся атомы кремния, алюминия, титана и некоторых др. элементов, не входящих в состав органических соединений; типичны кремнийорганические соединения.

287. Полимеры, классификация по реакции синтеза. Огромное число полимеров можно подразделить на три основных класса, лежащих в основе принятой сейчас классификации.
К первому классу
относится обширная группа карбоцепных полимеров, макромолекулы которых имеют скелет, построенный из атомов углерода. Типичными представителями полимеров этого класса можно назвать полиэтилен, полипропилен, полиизобутилен, полиметилметакрилат, поливиниловый спирт и множество других. Фрагмент макромолекулы первого из них имеет следующее строение: [-СН2-СН2-]n.

Ко второму классу
относится не менее обширная группа гетероцепных полимеров, макромолекулы которых в основной цепи помимо атомов углерода содержат гетероатомы (например, кислород, азот, серу и др.). К полимерам этого класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т.д., а также большая группа элементоорганических полимеров: полиэтиленоксид (простой полиэфир); полиэтилентерефталат (сложный полиэфир) полиамид; полидиметилсилоксан.

Третий класс полимеров
- высокомолекулярные соединения с сопряженной системой связей. К ним относятся различные полиацетилены, полифенилены, полиоксадиазолы и многие другие соединения. Примерами таких полимеров могут служить: полиацетилен; полифенилен; полиоксадиазол.
К этому же классу относится интересная группа хелатных полимеров, в состав которых входят различные элементы, способные к образованию координационных связей (они обычно обозначаются стрелками). Элементарное звено таких полимеров часто имеет сложное строение.

Среди многочисленных полимерных материалов наибольшее практическое применение пока находят материалы на основе представителей первого класса полимеров - карбоцепных высокомолекулярных соединений. Из карбоцепных полимеров можно получить ценнейшие материалы - синтетические каучуки, пластмассы, волокна, пленки и т.д., и исторически именно эти полимеры нашли первое практическое применение (получение фенолоформальдегидных смол, синтетического каучука, органического стекла и др.). Многие из карбоцепных полимеров стали впоследствии классическими объектами для исследования и создания теории механического поведения полимерных тел (например, полиизобутилен, полиметилметакрилат, полипропилен, фенолоформальдегидная смола и т.д.).

По способности к вторичной переработке полимеры подразделяются на термопласты и реактопласты. Рассмотрим первые подробнее. К термопластичным материалам или термопластам (thermoplast, thermoplastic) относятся полимеры, которые при нагревании в процессе переработки переходят из твердого агрегатного состояния в жидкое: высокоэластическое или вязкотекучее (литьевые термопласты переходят в вязкотекучее состояние). При охлаждении материала происходит обратный переход в твердое состояние. Поведение при нагревании отличает термопласты от термореактивных материалов или реактопластов (thermoset), которые отверждаются при переработке и не способны далее переходить в жидкое агрегатное состояние.

Физические состояния термопластов
В зависимости от принимаемых фазовых состояний термопластичные материалы делятся на аморфные и кристаллические (точнее кристаллизующиеся). В кристаллизующихся литьевых термопластах всегда сохраняется какая-то доля незакристаллизованного (аморфного) материала, поэтому эти материалы иногда называют частично-кристаллическими. Некоторые материалы (PC), в принципе способные к кристаллизации, не кристаллизуются при литье под давлением, оставаясь аморфными. Есть материалы , которые могут быть аморфными или кристаллизоваться в зависимости от условий литья. Другие - очень сильно меняют степень кристалличности и свойства при изменении технологического режима. Способность к кристаллизации - очень важное свойство материалов, определяющее их поведение при переработке, и которое обязательно должно учитываться при конструировании изделий и пресс-форм и выборе технологического режима литья. Кристаллизующиеся материалы имеют высокий уровень усадки и анизотропии усадки (разница продольной и поперечной усадки). Пигменты и другие добавки, действуя как нуклеаторы (зародышеобразователи кристаллизации), могут значительно изменять структуру и свойства кристаллизующихся материалов.

В зависимости от температуры аморфные термопласты имеют 3 физических состояния: стеклообразное, высокоэластическое и вязкотекучее.
Для стеклообразного состояния характерны небольшие упругие деформации.
Переход из высокоэластического состояния в стеклообразное происходит в некотором диапазоне температур, центр которого называют температурой стеклования Tc (glass transition temperature, Tg). В зависимости от метода определения температура стеклования может значительно изменяться. При повышении температуры стекловании повышается температура эксплуатации аморфного материала.
Полимер в высокоэластическом состоянии способен к большим обратимым деформациям, достигающим сотен и более %. При повышении температуры литьевой термопластичный материал переходит из высокоэластического состояния в вязкотекучее. Температура такого перехода называется температурой текучести Тт. Выше температуры текучести в полимере проявляются необратимые деформация вязкого течения. При нагревании аморфного материала обычно визуально наблюдается нефазовый переход, напоминающий процесс плавления для кристаллизующихся термопластов. Температуру такого перехода условно называют температурой плавления (melting temperature, Tm ) аморфного материала.
В кристаллизующихся термопластах аморфная фаза может приобретать описанные выше физические состояния. При нагревании кристаллическая фаза плавится. Температура этого фазового перехода называется температурой плавления Тпл (melting temperature, Tm). Свойства кристаллизующихся полимеров зависят от содержания кристаллической фазы и от того, в каком физическом состоянии (стеклообразном или высокоэластическом) находится при температуре эксплуатации аморфная фаза.

Классификация термопластов по эксплуатационным свойствам
Литьевые термопластичные материалы делят на несколько групп в зависимости от уровня эксплуатационных свойств. К таким свойствам прежде всего относится температура долговременной эксплуатации.
Пластмассы достаточно условно делят на группы (в различных изданиях приводятся разные критерии классификации):
Материалы общего назначения или общетехнического назначения (general purpose plastics);
Конструкционные пластмассы или пластмассы инженерно-технического назначения (engineering plastics);
Суперконструкционные (super-engineering plastics) или высокотермостойкие полимеры (high temperature plastics).
Среди термопластов выделяют особую группу термопластичных эластомеров или термоэластопластов (TPE), которые по технологическим свойствам являются обычными термопластами, а по эксплуатационным подобны каучукам и резинам, т.е. способны к большим обратимым деформациям. В зависимости от температуры долговременной эксплуатации термоэластопласты также подразделяют на материалы общего назначения (general purpose TPE) и инженерно-технического назначения (engineering TPE).

Классификация термопластов по химической структуре
По химическому строению многочисленные литьевые термопластичные материалы обычно подразделяют на несколько групп (классов). Современная промышленность выпускает большое количество типов полиолефинов (PO), важнейшими из которых являются группы полиэтиленов (PE) и полипропиленов (PP). Многочисленные типы материалов представлены в группах стирольных пластиков (PS), полиамидов (PA), сложных полиэфиров (polyester).
Традиционно выделяют группы полимеров на основе целлюлозы (cellulosic plastics), фторполимеров или фторопластов (fluoro plastics). Изготовители акриловых полимеров или акрилатов (acrylic) часто указывают только принадлежность материала к данной группе и не приводят тип материала.

Классификация термопластов по объему производства
Нередко в литературе выделяют группу крупнотоннажных материалов (volume plastics), к которым относят полиэтилен (PE) и полипропилен (PP). основные стирольные пластики (PS) и особенно АБС (ABS), акрилаты (acrylic), ПВХ (PVC) и бутылочный ПЭТ (PET).

Гомополимеры. Сополимеры. Стереоизомеры
Полимеры, построенные одинаковых мономеров называют гомополимерами (homopolymer), из разных - сополимерами (copolymer).
Для некоторых типов материалов (полипропилен, полистирол и др.) помимо химической формулы большое значение имеет стереоизомерия - тип пространственной конфигурации боковых групп атомов относительно полимерной цепи. Наиболее важные типы стереоизомеров:
изотактический (isotactic) - боковые группы расположены по одну сторону полимерной цепи;
синдиотактический (syndiotactic) - боковые группы последовательно чередуются по одну и другую сторону полимерной цепи;
атактическиий (atactic) - беспорядочное расположение боковых групп по одну и другую сторону полимерной цепи.
Развитие технологи синтеза полимеров с использованием металлоценовых катализаторов, позволило наладить в последние годы промышленный выпуск различных стереоизомеров.
В качестве примера влияния стереоизомерии на эксплуатационные свойства материала можно привести синдиотактический полистирол (SPS), являющийся кристаллизующимся материалом в отличие от обычного аморфного атактического полистирола.

По структуре сополимеры делят на несколько типов:
блок-сополимер (block-copolymer) - регулярное чередование последовательностей (блоков) звеньев в основной цепи;
статистический сополимер (random copolymer) - нерегулярное чередование последовательностей звеньев;
привитой сополимер (graft copolymer) - имеет основную цепь в виде гомополимера или сополимера, к которой присоединены боковые цепи;
чередующийся или альтернатный сополимер (alternating copolymer) - регулярное чередование звеньев в основной цепи.
В последнее время большое развитие получили интерполимеры - сополимеры, образующие гомогенную структуру (компоненты не выделяются в отдельные фазы).

Помимо двойных сополимеров, построенных из двух типов мономерных звеньев, выпускаются тройные сополимеры (terpolymer), состоящие из трех типов звеньев, а также сополимеры с четырьмя и большим количеством типов звеньев. Тройными сополимерами являются АБС-пластики (ABS), ACA-сополимер (ASA) и др.

Классификация термопластов по типу наполнителя
Наполнители могут значительно изменять эксплуатационные и технологические свойства термопластов.
Термопласты, содержащие стекловолокно и др. виды стеклянных наполнителей, традиционно называют стеклопластиками (glass filled). В последние годы большое распространение получили материалы, наполненные длинным стекловолокном, требующие особых условий переработки.
Углепластиками (carbon filled) называют материалы, содержащие углеродное волокно.
Иногда выделяют группу "специальных" термопластов. К ним относят материалы, содержащие антипирены (материалы с повышенной стойкостью к горению), электропроводящие добавки (антистатические, электропроводящие, ЭМИ-экранирующие материалы), антифрикционные добавки (материалы с пониженным коэффициентом трения), добавки, придающие износостойкость и др.




































Дата: 2019-07-24, просмотров: 270.