Основные результаты и выводы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Впервые изучена система MJ-AgJ-CH3COCH3, где M=Rb, К. Получены растворимости смеси AgJ и MJ в ацетоне. Найдены условия при которых образуется сольват MAg3J42CH3COCH3, чистая фаза AgtMJj или смесь фаз Ag4MJ5 и M2AgJ3> Разработан метод выращивания монокристаллов AgiMJs из раствора RbJ-AgJ-CH3COCH3. Этим методом впервые получены бесцветные, оптически прозрачные

Монокристаллы Ag^RbJs высокой чистоты объемом до 30 см3. Параметр элементарной ячейки для а-фазы а=11,24А. Рентгеновская плотность для четырех формульных единиц равна 5,38 г/см3, проводимость 0,31 Ом» см» при 298К. Разработан метод выращивания монокристаллов Ag4KJs. Этим методом впервые получены оптически прозрачные монокристаллы объемом до 0,13 см3 и с проводимостью 0,33 Ом'1 см»' при 298К. Из системы AgJ-RbJ-HJ-H20-C3H60 выращены монокристаллы AgJ для оптических исследований.

Исследованы на монокристаллах «фазовые переходы а<->р при 208К и у-» р при 120К. Оптическими и термодинамическими методами показано, что фазовый переход 208К обладает температурным гистерезисом ~1 К, полная энергия и энтропия перехода Р-а равны 565 Дж/моль и 2,93 Дж/моль.К. Сделан вывод, что фазовый переход 208К относится к переходам первого рода. Исследована доменная структура, образующаяся при фазовом переходе а-р. Показано, что в Р - фазе размер доменов определяется температурой и не носит релаксационного характера. Обнаружена субдоменная структура, возникающая в кристаллах, претерпевших большое число фазовых переходов оу. Появление субдоменной структуры сопровождается образованием трещин и разрушением кристалла. Обнаружено, что при фазовом переходе у-р (120К) скрытая теплота выделяется в два этапа с интервалом 0.4К. Полная энергия и энтропия равны 339 Дж/моль и 2,80 Дж/моль. К соответственно. Определена температурная зависимость ширины запрещенной зоны.

Исследованы процессы кинетики основных носителей на монокристаллах. Получены температурные зависимости коэффициента диффузии Ag и проводимости. Энергии активации диффузии 0.093 eV, проводимости 0,106 eV. Найдена корреляция «и определено отношение Хёйвёна (0,48...0,42 для интервала 273...373К). Установлено, что коэффициенты диффузии в моно - и поликристаллических образцах, в пределах погрешности, совпадают.

Показано, что в Ag4RbJs отсутствует влияние межкристаллических границ на перенос ионов Ag+.

Впервые исследован процесс диффузии ионов йода в монокристаллах Ag4RbJ5 с помощью изотопа 13,J. Получена температурная зависимость коэффициента диффузии с энергией активации 0,98eV. Обнаружено влияние йода на монокристаллы A&RbJs и обнаружен эффект их аддитивного окрашивания при нормальных условиях. Установлена корреляция между концентрациями йода в газовой фазе и центров окраски в монокристаллах. Показано, что центрам окраски принадлежит полоса 2,93 eV с полушириной 0,78eV. Установлено, что при концентрации дырок большей, чем 4.10. см, кристалл разрушается. Предложена модель, по которой эффект окрашивания связан с захватом атомами йода, адсорбировавшимися на поверхности, электронов и образованием в валентной зоне кристалла дырок, которые, в свою очередь, образуют центры окраски, диффундирующие. в решетку.

Оптическими методами исследован процесс диффузии центров окраски. Получена температурная зависимость коэффициента диффузии с энергией активации 0,33 eV. Спектроскопическими, люминесцентными и диффузионными методами показано, что при аддитивном окрашивании на поверхности кристаллов образуется слой AgJ, который снижает эффективный поток йода через поверхность.

Сделан вывод, что аддитивное окрашивание кристаллов AgtRbJs при нормальных условиях возможно при высокой подвижности ионов серебра. Обнаружено, что аддитивное окрашивание приводит к изменению электронной составляющей проводимости.

Методами потенциодинамической вольтамперометрии и импеданса изучено электрохимическое поведение йода и его комплексов с фенотиазином на границе с суперионными проводниками. Рассчитаны кинетические параметры. Показано, что гетеропереход описывается, эквивалентной схемой, включающей наряду с емкостью двойного слоя две параллельные релаксационные цепочки. Одна из них связана с ионами рубидия и состоит из адсорбционной емкости (С2) и диффузионного импеданса Варбурга (ZW2), вторая - связанная с центрами окраски, состоит из адсорбционного сопротивления (R3), С3 и ZW3 – Гетеропереходы с поликристаллическим супериоником описываются схемой, в которой вторая цепочка содержит R3 и ZW3.

Исследованы гетеропереходы гpaфит/Ag4Rbт5 и cepe6po/Ag4RbJ5 на монокристаллах. Получены температурные зависимости параметров эквивалентных схем гетеропереходов RF) С, С2, R2, W2. Вычислены энергии активации для RF, и для W2. Обнаружено, что параметры i эквивалентной схемы гетероперехода зависят от ориентации монокристалла, т.е. от плотности упаковки граней. На основании результатов по диффузии ионов иода и определения постоянной Варбурга W2, показано, что не основными носителями в модели АРДС выступают ионы рубидия, влияющие на перераспределение ионных и электронных носителей заряда на границе электрод/электролит. Обнаружена корреляция между термодинамической стабильностью суперионного проводника и энергией активации сопротивления - переноса заряда основных носителей RF и диффузией не основных носителей, определяемых из импедансных измерений.

Определена корреляция между структурными фазовыми переходами, оптическими характеристиками и спектрами проводимости, полученными в субмиллиметровом диапазоне.

Разработан измерительный комплекс с компьютерным управлением для снятия различных вариантов вольтамперометрических зависимостей. Предложен алгоритм моделирования эквивалентных схем, описывающий гетеропереходы и определяющий их числовые значения.

Ю. Созданы макетные образцы сенсора на йод и сверхъемкого конденсатора. Сенсор работоспособен в газовой среде с концентрацией иода 10~...1 о Ми100% -ной влажностью в интервале температур; 320...390К. Доза облучения до 400 кГр. Сверхъемкий конденсатов ионистор с основными характеристиками емкость до 100 Ф; ток саморазряда при 398К < 10 нА, при 298К < 10 пА; количество циклов заряд-разряд > 150000.

Все вышеизложенное позволяет считать совокупность проведенных исследований новым научным направлением, заключающимся в установлении взаимосвязи структурных, оптических и электрохимических характеристик униполярных суперионных монокристаллов класса a-AgJ с проводимостью по ионам серебра, предопределяющей возникновение суперионного состояния твердых тел.


Основное содержание диссертации опубликовано в следующих работах

 

1. Гоффман В.Г., Тиликс Ю.Е., Скуиня А.А., Дзелме Ю.Р., Луговской В.К., Укше Е.А. Диффузия иода в монокристаллах твердого электролита RbAgJs // Электрохимия. - 1979. - Т.15. №8. - С.1252-1255.

2. Гоффман В.Г., Букун Н.Г., Укше Е.А. Импеданс ячеек с монокристаллическим твердым электролитом RbAgJs // Электрохимия, 1981. r.17. №7. -C.1098-1102.

3. Гоффман В.Г., Укше Е.А. Профили концентрации и коэффициенты диффузии иода в RbAg^s // Электрохимия, - 1981. - Т.17. №3. - С.380-382.

4. Гоффман В.Г., Укше Е.А. Растворение иода в твердом электролите RbAg4J5 // Электрохимия. -1981. -Т.17. №9. -С.1402-1404.

5. Гоффман В.Г., Скуиня А.А., Тиликс Ю.Е., Укше Е.А. Диффузия ионов в твердом электролите RbAg4J57/ Электрохимия. - 1981. - Т.17. №8.

6. С.1261-1263.7. Tiliks J. E., Goffman V. G., Skuinja А.А., Dzelme J. R.,

7. Lugovskoi V. K., Ukshe E. A. The measurement of silver and iodide diffusion coefficients in RbAg4J5 single crystals // Inter conf. Detects ininsulating crystals. Abstr. Of contrib. Papers. Riga, 1981. P.504-505. I 8. Букун Н.Г.,

8. Укше E. A., Гоффман В.Г. Комплексное сопротивление границы графит/твердый электролит RbAg4Js // Электрохимия. - 1982. -Т.18. №5. -С.653-656.9.

9. Букун Н.Г., Гоффман В.Г., Укше Е.А. Импеданс обратимой границы серебро/монокристаллический твердый электролит RbAg4J5 Электрохимия. - 1983. - Т. 19. №6. -С.731-736.Ю. Гоффман В.Г., Андреев В.Н., Шаймерденов Б.У., Укше Е.А.

10. Аддитивное окрашивание иодом твердого электролита RbAgJs // Ионика твердого тела: Материалы докладов ITI научного семинара.

11. Тез. докл. - Свердловск, 1979. - С.29-30.15. Мищенко А.В., Иванов-Шиц А.К., Гоффман В.Г., Боровков B. C.

12. Выращивание и свойства монокристаллов твердого электролита RbAg4J5. I // Электрохимия. - 1975. - Т.11. №2. - С.333-335.16. Мищенко А.В., Гоффман В.Г., Иванов-Шиц А.К., Боровков B. C.

13. Выращивание и свойства монокристаллов твердого электролита RbAg4J5. II // Электрохимия. - 1977. - Т.13. №12. - С.1858-1859.17. Иванов-Шиц А.К., Боровков B. C., Мищенко А.В., Гоффман В.Г.

14. Электропроводность и фазовые переходы в твердом электролите RbAg4J5 // ДАН СССР, - 1976. - Т228. №6. - С.1376-1379.18. Андреев В.Н., Гоффман В.Г. Поглощение света в кристаллах RbAg4J5,окрашенных иодом // ФТТ. - 1983. - Т.25. №11. - С.3480-3482. 19. Андреев В.Н., Гоффман В.Г., Гурьянов А.А., Чудновский Ф.А.

15. Доменная структура RbAg4J5 ниже точки фазового перехода 208К // ФТТ. - 1983. - Т.25. №9. - С.2636-2643. 20. Иванов-Шиц А.К., Мищенко А.В., Гоффман В.Г. Получение и свойства монокристаллов твердого электролита RbAg4J5 // VI Всесоюз. конф. по физической химии ионных расплавов и твердых электролитов:

16. Тез. докл. Часть 2. - Киев, 1976. - С.119-120.21. Иванов-Шиц А.К., Мищенко А.В., Гоффман В.Г. Выращивание монокристаллов твердого электролита RbAg4J5 из раствора в ацетоне // V Всесоюз. совещ. по росту кристаллов: Тез. докл. - Тбилиси, 1977. -С.77-78.22.

17. Андреев В.Н., Гоффман В.Г., Гурьянов А.А., Захарченя Б. П., Чудновский Ф.А. Температурный гистерезис и скрытая теплота при фазовом переходе 208К в суперионном проводнике RbAg4J5 // Письма в ЖЭТФ, 1982. -Т.36. №3. -С.61-63.23.

18. Афанасьев М.М., Гоффман В.Г., Компан М.Е. Люминесценция ионного проводника RbAg4J5 // ФТТ. 1982. - Т.24. №5. - С.1540-1542.24.

19. Афанасьев М.М., Гоффман В.Г., Компан М.Е. Фотолюминесценция низкотемпературной фазы суперионного проводника RbAg4J5 // ЖЭТФ, 1983. - Т.84. №4. - С.1310-1317.25.

20. Афанасьев М.М., Гоффман В.Г., Компан М.Е. Фотолюминесценция монокристаллов суперионного проводника RbAg4J5, аддитивно окрашенного иодом // ФТТ. 1987. - Т.29. №3. - С.940-941

21. С.2207-2210.27. Волков А.А., Козлов Г.В., Мирзоев Г.И., Гоффман В.Г.

22. Субмиллиметровые колебательные спектры суперионного проводника

23. RbAg4J5 // Письма в ЖЭТФ. 1983. - Т.38. №.4. - С.182-185.28. Волков А.А., Козлов Г.В., Мирзоянц Г.И., Гоффман В.Г. Спектр проводимости (х - и Р - RbAg на частотах 2-33 см'1 // ФТТ, 1985. - Т.27.

24. №6. -С.1874-1877.29. Kozlov G. V., Mirzoyants A. A., Volkov А.А., Goffman V. G. The splitting of the infrared vibrational spectra of RbAg4J5 in Low-temperature y-shase // Phisics Letters, 1984. - V.105A. № 6. - P.324-326.30.

25. Волков А.А., Козлов Г.В., Мирзоянц Г.И., Гончаров Ю.Г., Торгашев В.И., Гоффман В.Г. Новые низкотемпературные фазовые переходы в суперионном проводнике RbAg^s // Письма в ЖЭТФ. 1986. -Т.43. №.6. -С.280-282.

26. Ованесян Н.С., Гоффман В.Г., Соколов В.В. . Ткачев В.В. Рэлеевское рассеяние мессбауэровского излучения в суперионном проводнике

27. RbAg4J5 // ФТТ. 1984. - Т.26. №4. - С.1197-1199.32. Goffman V. G. ^ Ovanesyan N. S., Sokolov V. B., Tkachev V. V., Sherbinin

28. Yu. S Releigh scattering Mossbauer radiation (RSMR) in superionic conductor // Programme and abstr. Inter, conf. On the appl. Of Mossbauer effect. Alma-Ata, 1983. P.463. ЗЗ.

29. Тараскин С.А., Струков Б.А., Гоффман В.Г., Шаймерденов Б.У.  Калориметрическое исследование монокристаллического суперионного проводника RbAgJs в широком интервале температур // ФТТ. 1985. - Т.27. №6. -С. 1904-1906.34 Гоффман В.Г. Быстрый ионный перенос в диэлектриках // Физика твердого тела и новые области ее применения: Тез. докл I Республ. конф. - Караганда, 1986. - С.108.

30. Гоффман В.Г., Базанов А.А., Ушкарева Л.В. Импеданс границы серебро/твердый электролит RbAg4J5«0,2Rb2AgJ3 // Твердые электролиты: Тез. докл. VII Всесоюз. конф. по физической химии ионных расплавов и твердых электролитов. - Л., 1983. - С.47-49.

31. Шаймерденов Б.У., Важев В.В., Писчанский ВВ., Гоффман В.Г. Применение химически сформированных тонких пленок твердых электролитов в сенсорных устройствах // Твердые электролиты: Тез. докл. X Всесоюз. конф. по физической химии ионных расплавов и твердых электролитов - Екатеринбург, 1992. - Т.З. - С.185.

32. Карпов И А, Симаков ВВ., Гоффман В.Г., Топоров Д.В., Михайлова А М Электрохимический импеданс композиционных структур, включающих суперионную компоненту // Современные технологии в образовании и науке: Сборник докл. - Саратов, 1998. - С.150-151.

33. Гоффман В.Г., Карпов И.А., Симаков В.В., Топоров Д. В, Михайлова A. M. Исследование процесса переноса заряда при формировании распределенных структур // Современные технологии в образовании и науке: Материалы Междунар. конференции. -Саратов, 1999. -С.25-26.

34. Добровольский Ю.А., Леонова Л.С., Вакуленко А.М., Гоффман В.Г. Детектирование газов при низких температурах // Датчики и преобразователи информации систем измерения, контроля и управления: Всеросс. науч. -технич. конференция. Гурзуф, 1994. - С.71.

35. Топоров Д.В., Давиденко О. . С, Гоффман В.Г., Михайлова A. M. Ионная проводимость монокристаллов Ag4KT5, полученных из раствора в ацетоне // Фундаментальные проблемы ионики твердого тела: Сборник материалов докладов на 5-м Международном совещании. Черноголовка, 2000. С.28-31.

36. Топоров Д.В., Гоффман В.Г., Михайлова A. M. Измерительный комплекс для исследования электрохимических систем // Фундаментальные проблемы ионики твердого тела: Сборник материалов докладов на 5-м Международном совещании. -Черноголовка, 2000. С.178-179.

37. GolTman V. G. Solid state electrolytes with analysis of iodine - containing media // . Sensor Tekhno-93: Proceed, of Jnt. Conf. - St. -Petersburg, 1993, July 22-23. -P.25.

 

 

38. Mikhailova A., Efanova W., Bukun N., Goffman V. Electrochemical behavior of solid-state short-circuite systems alkaline metal-organic semiconductor // ! 2th International conference on solid state ionics (SSI-12) 26 January, 1999. Patras, Greece. P.654.

 

 

 

 

 

 

 

 

 

 

 

 


Дата: 2019-07-24, просмотров: 155.