Актуальность темы диссертации
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Апробация работы

 

Материалы диссертационной работы докладывались на V Всесоюзном совещании по росту кристаллов, на VI, VII, VIII и XI Всесоюзных конференциях по физической химии ионных расплавов и твердых электролитов (Киев, 1976; Свердловск, 1979; Ленинград, 1983; Екатеринбург, 1992), на Международной конференции «Дефекты в диэлектрических кристаллах» (Рига, 1981), на VI Всесоюзной конференции по электрохимии (Москва, 1982), на III Всесоюзном семинаре «Ионика твердого тела» (Вильнюс, 1983), на семинарах в ИФТТ АН СССР (Черноголовка, 1984), в ФТИ им. А.Ф. Иоффе АН СССР (Ленинград, 1983), в ИНХП АН СССР (Черноголовка, 1984), на семинарах Секции Научного Совета АН СССР по физической химии ионных расплавов и твердых электролитов «Ионика твердого тела» в Риге (1981, 1982, 1984, 1985, 1986, 1988), Республиканской конференции «Физика твердого тела и новые области ее применения» (Караганда, 1986, 1990), III Всесоюзном совещании по химическим реактивам «Состояние и перспективы развития ассортимента химических реактивов для важнейших отраслей народного хозяйства и научных исследований» (Ашхабад, 1989), III Всесоюзном симпозиуме «Твердые электролиты и их практическое применение» (Минск, 1990), Conf. «Sensor Tekhno - 93S (St. -Petersburg, 1993), Всероссийской научно-технической конференции «Датчики и преобразователи информации систем измерения, контроля и управления» (Гурзуф, 1994), Всесоюзной конференции «Современные технологии в образовании и науке» (Саратов, 1998, 1999), 12th International conference on solid state ionics (Greece, 1999), 5-м международном совещании.

Основные положения диссертации изложены в 56 публикациях, наиболее важные из которых приведены в автореферате.



Объем и структура работы

 

Диссертационная работа состоит из введения, 7 глав, основных выводов и заключения. Изложена на 302 страницах машинописного текста, включая 129 рисунков и 29 таблиц. Список цитируемой литературы содержит 335 наименований.

Основное содержание работы

 

Во введении приводятся обоснование актуальности выбранной темы, цель и задачи работы, рассматриваются научная новизна и практическая ценность полученных результатов, дается содержание основных положений, выносимых на защиту.

В первой главе систематизированы и представлены наиболее характерные суперионные проводники. Рассмотрены теоретические основы метода исследования гетеропереходов с суперионными проводниками - метод импеданса, метод вольтамперометрии, методы измерения электронной и дырочной проводимостей. Критически разобраны известные методы синтеза и выращивания монокристаллов. Сделан вывод, что перспективной системой для выращивания чистых и совершенных монокристаллов Ag4RbJ5 может быть система MJ-AgJ-СН3СОСН3. Проведен анализ известных результатов исследования ионной проводимости, диффузии, термодинамических свойств суперионных проводников. Отмечено, что подавляющее число исследований выполнено на поликристаллических образцах, чистоту и фазовый состав которых в большинстве случаев не определяли. Глава завершается обсуждением основных направлений исследования и выбором объектов.

Во второй главе приведено описание методов исследований суперионных проводников, гетеропереходов. Приводятся результаты исследования систем для получения монокристаллов. Описан способ получения монокристаллов.

Для изучения системы и идентификации кристаллизующихся фаз измеряли температурные зависимости растворимости и плотности раствора (метод взвешивания кварцевого эталона в растворе). Для идентификации кристаллизующихся фаз были применены визуальный политермический анализ в малых объемах, рентгенофазовый анализ (ДРОН-2), дифференциально-термический и термовесовой анализы (дериватограф Q-1500D). Изучены: огранка кристаллов (гониометр ZRG3), плотность кристаллов (метод гидростатического взвешивания в толуоле). Для выращивания чистых кристаллов разработаны методы очистки AgJ и смеси RbJ-AgJ. Для определения чистоты и состава кристаллизующихся фаз разработаны методы определения AgJ и J2 в составах RbJ-AgJ.

Спектры поглощения изучали с помощью двухлучевого спектрометра «Specord UV-VIS» и спектрофотометра «СФ-16», тепловые эффекты измеряли дифференциальным сканирующим калориметром «DSC-III» и вакуумным адиабатическим калориметром. Для возбуждения люминесценции использовали импульсный лазер ЛГИ-21 (337 нм). Исследование вращения плоскости поляризации проводили с помощью спектрополяриметра, позволяющего определять угол с точностью 0,1°.

Эффективную концентрацию иода в кристаллах определяли методом экстрагирования (растворитель - четыреххлористый углерод).

 

Измерения импеданса

 

Измерения частотных зависимостей R, С гетеропереходов проводили с помощью моста переменного тока Р568 в диапазоне 0,04...100 кГц. Колебания температуры в измерительной ячейке не превышали ±0,01 К. Анализ частотных зависимостей R, С импеданса проводили на основе модели релаксации двойного слоя с помощью графоаналитического метода и методом оптимизации.

Метод оптимизации

заключается в компьютерном подборе эквивалентных схем и минимизации нормированной функции ошибок методом сопряженных градиентов и методом Ньютона (табличный процессор Ехсе1). Применялись программы, созданные на языке «Паскаль» и основанные на симплексном методе Нелдера - Мида и на методе Хука - Дживса, отслеживающие локальные и основной минимумы.

Исследования методом потенциодинамической вольтамперометрии проводили с помощью системы, позволяющей автоматизировать работу промышленного потенциостата. В состав системы вошли потенциостат ЕР-21, персональный компьютер, аналого-цифровой и цифроаналоговый преобразователь ЕТ1050 (АЦП-ЦАП).

Измерения ионной проводимости проводили 4 - контактным методом на постоянном токе. В качестве источника постоянного тока (гальваностата) использовали универсальный прибор В7-16А в режиме

10 измерения сопротивления. Причем, на пределах xlOOO, xlOO, xlO, xl через исследуемый образец протекал ток 1; 0,1; 0,01 и 0,001 мА соответственно.

Разработка технологии получения монокристаллов Система RbJ-AgJ-CI-bCOCHi исследована в температурном интервале 294...335 К. При температуре 330,7 К в растворе обнаружен фазовый переход, при котором температурный коэффициент растворимости меняет знак (рис.1). Ниже 330,7 К энтальпия растворения отрицательна (-21,7 кДж/моль), выше 330,7 К положительна и равна 75 кДж/моль. В точке перегиба растворимость и плотность раствора максимальны (А = 165,5%, р = 1,68 г/см3).

Фаза III идентифицирована как Rb2AgJ3. Кристаллы Rb2AgJ3 относятся к ромбической сингонии. Параметры элементарной ячейки: а = 20,0 A, b = 10,3 А, с = 4,9 А. Плотность 4,34 г/см3. Ширина запрещенной зоны ~ 3,95 eV. Температура плавления 578 К.

Фаза II идентифицирована как Ag4RbJ5. Монокристаллы Ag4RbJ5 относятся к кубической сингонии. Параметр элементарной ячейки: а =11,24 А. Рентгеновская плотность для четырех формульных единиц равна 5,38 г/ем3, совпадает с плотностью, определенной гидростатическим взвешиванием. Термограмма при нагревании фиксирует один эндотермический эффект при 503 К, который соответствует температуре плавления Ag4RbJ5.

Температурный интервал, при котором можно получить кристаллы Ag4RbJ5, узок (~276 К), поэтому выращивание монокристаллов

проводили в - изотермических условиях при 331...332 К. Скорость роста ~ 0,3 мм/сут. Рост проводили на кристаллизационной установке.

Термодинамические характеристики.

На рис.4 представлена температурная зависимость СР(Т) в интервале температур 10О-250К. Видны два узких максимума при температурах TV = 120.55К и Т2 = 208.26К, соответствующих у-»Р и р-»а переходам. При температуре Т|=120.55К (Р - переход) теплоемкость достигает значений - 2510 Дж/моль К, затем резко падает до величины 258 Дж/моль. К, превышая значение СР(Т) до перехода на 13 Дж/моль. К. В интервале температур 122-180К значение теплоемкости растет линейно с температурой по закону Ср(Т) =258+0.565 (Т - Т,) Дж/моль.К.

Выше температуры 180К начинается нелинейный рост СР(Т), и при Т2 = 208.26К теплоемкость достигает максимального значения - 2510 Дж/моль К, а затем в интервале Т2+0.74К падает до постоянного значения 292 Дж/моль. К, сохраняя его до 305К.

Проведенные квазистатические измерения СР(Т) в области фазовых переходов со скоростями нагрева 0.17 К/мин показали, что при Т) и Т2 фазовые переходы имеют скрытую теплоту перехода, равную 66.15 и 97.78 Дж/моль соответственно, причем при у->р-переходе скрытая теплота выделяется в два этапа с интервалом 0.4К (37.41 и 28.75 Дж/моль). Проведя графическое интегрирование аномальной части СР(Т) в области Ti и Т2, были оценены полная энергия и энтропия каждого перехода

AQt, = 339 ± 0.5 Дж/моль,AQtz = 565 ± 0.5 Дж/моль,

AS-n = 2.80 ± 0.29 Дж/моль. К, AS-n = 2.93 ± 0.29 Дж/моль. К.,

Общая энергия и энтропия переходов равна соответственно 4163 и 22.7. Дж/моль К.

Однако, как показали технологические испытания, RbAg4Js находится в метастабильном состоянии и может храниться сколь угодно долго в сухой атмосфере при комнатных температурах.

Наблюдения за перемещением границы фаз (рис.5) с одновременной фиксацией температуры позволили также зарегистрировать гистерезис (1,0 ± 0,2) К оптических свойств кристалла.

Исследование температурной зависимости теплоемкости (динамический режим) при нагревании и охлаждении также указывает на наличие температурного гистерезиса ~1К<ДТ<ЗК. Факт существования температурного гистерезиса позволяет отнести перехода«-»Р к переходам первого рода. При охлаждении кристалла до температуры 208К в нем скачкообразно возникает доменная структура, проявляющаяся в виде системы светлых и темных полос, повернутых друг к другу под углом 120° и перпендикулярных направлениям [ПО], [101], [ОН]. Размер доменов зависит от температуры: при понижении температуры - увеличивается, а при нагревании - уменьшается. Субдоменная структура, возникающая в кристаллах, претерпевших большое число фазовых переходов сопровождается образованием трещин, которые приводят к разрушению кристалла.

Симметрия монокристаллов Ag4RbJ5 описывается энантиоморфными пространственными группами Р4332 (О6) и P4t32 (О7). Отсутствие центра инверсии в этих группах предполагает наличие эффекта вращения плоскости поляризации. Дисперсия угла вращения плоскости поляризации измерена в интервале 435...691 нм и для угла вращения плоскости поляризации получена зависимость

р = 1,945 * 106 А.2 / [А.2 - (251) 2] 2.

Исследование температурной зависимости р показало, что при 206,5К р скачком снижается до нуля. При повышении температуры наблюдается скачкообразное увеличение р от нуля до первоначального значения при температуре 208,5К. Гистерезис р при, фазовом переходе составляет около 2 К, монокристаллы Ag4RbJ в парах иода окрашиваются, причем цвет кристаллов меняется от желтого до фиолетового, в зависимости от концентрации иода в газовой фазе.

Ск(25°С) /Ср = 0,141 ± 0,09; Ск(52°С) /Ср = 0,087 ± 0,004, связывающие эффективную концентрацию иода в кристалле (Ск) и концентрацию иода в растворе (Ср). Из соотношений следует, что иода в кристаллах подчиняется законам идеальных растворов, о чем свидетельствует постоянство коэффициента распределения в интервале 0...3 * 106 моль/см3. При более высокой концентрации кристалл разрушается.

Спектры оптической плотности окрашенных кристаллов были сняты для температурного интервала 30...300К. Смещения максимума полосы поглощения замечено не было. Форма полосы соответствует зависимости

Q = Q0 ехр [-4 (hv - hv0) 2 In 2/W2], где Q - оптическая плотность, зависящая от концентрации центров окраски; hv0=2,93 eV - энергия, соответствующая максимуму полосы поглощения; W=(0,78 ± 0,01) eV - полуширина полосы. Сила осциллятора - 0,15.

Следствием окрашивания Ag4RbJ5 в парах иода в соответствии с механизмом, предложенным в гл.6, является образование на поверхности кристалла слоя AgJ. Изучение спектров поглощения окрашенных кристаллов (Рис.6), позволило обнаружить небольшую узкую полосу 425 нм (2,92 eV). После удаления с окрашенного кристалла поверхностного слоя полоса 425 нм исчезает. Спектр тонкой пленки AgJ содержит идентичную полосу с максимумом 425 нм.

Спектр люминесценции чистой поверхности кристалла представляет собой широкую полосу с максимумом около 390 нм (рис.7). Максимум этой полосы с повышением температуры от 8 до 70 К смещается к 400 нм. При температуре 90 К полоса 390 - 400 нм уже не различима. В а - и Р - фазах спектр состоит лишь из одной линии с максимумом около 426 нм и полушириной ~ 6 нм. Интенсивность этой линии зависит только от состояния поверхности образца. Если поверхность образца чистая, то линия1426 нм отсутствует. Полоса с максимумом около 390 нм близка к положению края поглощения в пленках A&RbJs, а ее температурное смещение соответствует уменьшению запрещенной зоны кристалла при нагревании.

Аддитивное окрашивание кристаллов в парах иода изменяет картину спектра люминесценции. Наряду с полосой 390 нм появляются полосы 425 и 428 нм (рис.7). Шлифование йодированных образцов приводит к их полному исчезновению. Обнаруженные линии 425 и 428 нм совпадают с известными линиями экситонной люминесценции 2Н - и 4Н - политипов AgJ. При изучении спектров поглощения и люминесценции обнаружено, что при аддитивном окрашивании кристаллов AgRbJ в парах йода на их поверхности образуется слой иодида серебра. Температурное изменение ширины запрещенной зоны. Шириной запрещенной зоны считали то значение Eg, при котором изменение оптической плотности D максимально, т.е. при максимуме производной 5D/3E. Как видно из рис.8, смещение края поглощения можно представить тремя линейными участками, причем при фазовых переходах 122 и 209К обнаружены скачки Дшк = 0.018 и ДЕк. = 0,010 eV. Возникающее при фазовом переходе а->Р рассеяние от доменной структуры кристалла приводит к увеличению измеряемого значения оптической плотности кристалла. Поэтому полученное значение ДЕож может быть только занижено относительно истинного значения этой величины. Значение Eg при 298 и 398 К, вычисленные по соотношениям, равны 2,95 и 2,82 eV соответственно.

В четвертой главе приведены результаты экспериментальных исследований процессов, связанных с кинетикой основных носителей заряда.

Исследование процесса диффузии серебра-110 на монокристаллах было проведено в интервале температур 267...369 К двумя методами:

 

Таблица 1

Коэффициенты уравнения Френкеля для A&RbJs.

Суперионик Электроды а010'3, Ом|см' E,eV
Монокристалл Графит, порошок 5. 20±0.22 0.10410.001
Поликристалл Графит, порошок 5.5310. 20 0.10610.001
Монокристалл Ag - сусальное 5.64±0.13 0.108+0.001
Поликристалл Ag - фольга 5.5110.23 0.104+0.001

 

Учитывая результаты исследования диффузии серебра в поликристаллических образцах, полученные позднее Лазарусом и др. (1981), и результаты, полученные на моно - и поликристаллах, можно сделать заключение, что в Ag4RbJ5 отсутствует влияние межкристаллических границ на перенос ионов Ag+.

 



Актуальность темы диссертации

 

Суперионные проводники - это твердые тела, обладающие свойством быстрого ионного переноса, для которых характерна высокая ионная проводимость достигающая значений 0.1...100 См/м. Соответственно коэффициенты диффузии подвижных ионов составляют 10»12...10'8 м2/с. Следует отметить две фундаментальные особенности суперионных проводников, отличающих их от жидких электролитов. Во-первых - перенос заряда осуществляется только одним сортом ионов, все остальные ионы формируют жесткий каркас кристаллической решетки, и их перенос может осуществляться по механизмам точечных дефектов. Во-вторых, суперионные проводники одновременно являются электронными полупроводниками с широкой запрещенной зоной и наличием электронных типов носителей заряда: дырок и электронов. Концентрация последних зависит от наличия местных донорных и акцепторных уровней. Из этого следует, что явление переноса как в объеме суперионного проводника, так и тем более на гетеропереходах в контакте с электролитами зависят от поведения электронных и ионных подсистем и их взаимного влияния. Исследования стационарных и переходных электрохимических процессов в конкретных системах с использованием поликристаллических материалов активно ведутся во всех промышленно развитых странах с целью установления основополагающих закономерностей бурно развивающейся новой отрасли науки - ионики твердого тела, и использования последних в создании преобразователей энергии и информации нового поколения.

Однако до настоящего времени нет работ электрохимического плана, выполненных на монокристаллах. Их отсутствие не позволяет скорректировать отличающиеся на порядки удельные характеристики, полученные исследователями на порошкообразных образцах, и отдать предпочтение наиболее реальным моделям и механизмам, объясняющим явления возникновения суперионного эффекта и функционирования электрохимических систем на их основе.

Поэтому научная работа, в которой поставлены задачи получения монокристаллов в системах на основе AgJ и определения ряда фундаментальных параметров, и их взаимного влияния на транспортные свойства и контактные явления, протекающие на границе с электродами различной природы, является своевременной и важной. Настоящая работа выполнена в лаборатории твердых электролитов ИНХП АН СССР (Черноголовка) и лаборатории «Ионика твердого тела» СГТУ (г. Саратов).

Работы велись в соответствии с координационными планами научных советов РАН «Физическая химия ионных расплавов и твердых электролитов», «Электрохимия и коррозия», а также на хоздоговорной основе в соответствии с тематическими планами производственных объединений «Позитрон» (Минэлектронпром), «Маяк» (Минэлектротехпром), «Сигнал» МАП, Института Общей физики АН СССР и по договорам о творческом сотрудничестве с институтами ФТИ им. А.Ф. Иоффе АН, МГУ, Латвийским университетом.

Цель работы заключается в установлении фундаментальных закономерностей транспортных свойств в твердофазных электрохимических системах, включающих суперионные монокристаллы с униполярной проводимостью по ионам серебра.

Поставленная цель достигается решением следующих задач:

• Поиск и исследование систем с целью разработки технологии получения чистых и совершенных монокристаллов на основе AgJ.

• Экспериментальные, исследования термодинамических, электрохимических, оптических свойств.

• Экспериментальные и теоретические исследования особенностей кинетики переноса основных и не основных носителей заряда.

• Экспериментальные и теоретические исследования кинетики аддитивного окрашивания суперионных монокристаллов в парах иода.

Экспериментальное и теоретическое исследование гетеропереходов с чистыми и легированными суперионными проводниками.

 

Дата: 2019-07-24, просмотров: 192.