|
Рис. 2.1 – Модель системы массового обслуживания
В нестационарном режиме распределение
удовлетворяют системе дифференциально-разностных уравнений вида
(2.1)
где , , , .
Замечание: система уравнений (2.1) получена аналогично системе уравнений (1.1). Вероятности переходов для состояний системы совпадают с точностью до замены .
Систему (2.1) будем решать в условиях перегрузки, то есть при .
Первое приближение
В системе уравнений (2.1) произведем замену переменных: . В результате такой замены производится переход от дискретной переменной к непрерывной переменной , от t перешли к , причем такое, что . После замены производная равна .
Тогда уравнения (2.1) перепишем
(2.2)
Решим систему уравнений (2.2) в два этапа.
1 этап. Считая и предполагая, что будем иметь
(2.3)
.
Выразим через функцию и получим
(2.4)
где асимптотическая плотность распределения нормированного числа заявок в источнике повторных вызовов.
Обозначим
(2.5)
( - это асимптотическая вероятность того, что обслуживающий прибор находится в состоянии k). Заметим, что из системы (2.3) следуют равенства связывающие , и
(2.6)
.
Найдем вид функции , для этого перейдем ко второму этапу.
2 этап. В системе дифференциальных уравнений (2.2) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим
(2.7)
Просуммируем левые и правые части уравнений системы (2.7) и получим равенство
. (2.8)
С учетом того, что
равенство (2.8) принимает вид
. (2.9)
Уравнение (2.9) является однородным линейным уравнением с частными производными первого порядка. Для того чтобы его решить составим уравнение
,
его решение , тогда
Общее решение уравнения (2.9) имеет вид
, (2.10)
где - произвольная дифференцируемая функция, аналитическое выражение которой найдем из начальных условий.
Пусть распределение в начальный момент времени где некоторая плотность распределения. Тогда следовательно . Возьмем в качестве начальной плотности распределения , где - дельта-функция Дирака, а , - число заявок в источнике повторных вызовов в начальный момент времени.
Таким образом , из свойств функции Дирака следует, что .
То есть мы получили, что , имеет смысл асимптотического среднего.
Из приведенных рассуждений вытекает еще одно важное следствие, а именно
имеет место , тогда (отрицательная функция противоречит смыслу задачи). В нашем случае совпадает с пропускной способностью системы.
Перейдем ко второму приближению, в котором будем искать распределение отклонения от асимптотического среднего.
Второе приближение
В исходной системе уравнений (2.1) сделаем замену переменных .
Заметим, что в новых обозначениях производная по времени равна . С учетом этого система (2.1) примет вид
(2.11)
Решение системы уравнений (2.11) аналогично решению системы (2.2), но проводится в три этапа.
1 этап. В системе дифференциальных уравнений (2.13) сделаем предельный переход при и предположим, что , получим
(2.12)
.
Решим эту систему аналогично тому, как решили систему уравнений (2.3). Введем функцию и выразим через нее , получим
(2.13)
где асимптотическая плотность распределения отклонения числа заявок в источнике повторных вызовов от асимптотического среднего.
2 этап. Функции будем искать с точностью до в форме
(2.14)
Найдем вид функций , и . Для этого в системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничимся слагаемыми порядка . Получим
(2.15)
В уравнения (2.15) подставим в форме (2.14), приведем подобные и получим систему неоднородных линейных алгебраических уравнений относительно вида
,
, (2.16)
Нетрудно увидеть, что между уравнениями этой системы есть зависимость и ранг матрицы системы равен, следовательно, чтобы решение уравнений (2.16)существовало, необходимо выполнение равенства
(2.17)
Из однородного линейного уравнения с частными производными первого порядка (2.9) мы знаем, что . Таким образом, можно сделать вывод, что система (2.16) разрешима. При условии, что функция известна, решение можно записать в виде
,
(2.18)
Теперь все готово, для того, чтобы найти функцию . Перейдем к третьему этапу.
3 этап. В системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим
(2.19)
Теперь подставим в уравнения (2.19) в форме (2.14) и просуммируем левые и правые части уравнений, будем иметь
(2.20)
Подставляя вместо и их выражения, полученные на втором этапе получим для уравнение Фоккера-Планка
, (2.21)
где
Нормированным решением полученного одномерного уравнения диффузии [8] является плотность нормального распределения вероятностей с нулевым средним и дисперсией
. (2.22)
Дата: 2019-07-24, просмотров: 194.