Существующие системы технического зрения основываются на довольно простых дескрипторах области, что делает их более привлекательными с вычислительной точки зрения. Как следует ожидать, применение этих дескрипторов ограничено ситуациями, в которых представляющие интерес объекты различаются настолько, что для их идентификации достаточно несколько основных дескрипторов.
Площадь области определяется как число пикселов, содержащихся в пределах ее границы. Этот дескриптор полезен при сборе информации о взаимном расположении и форме объектов, от которых камера располагается приблизительно на одном и том же расстоянии. Типичным примером может служить распознавание системой технического зрения объектов, движущихся по конвейеру.
Большая и малая оси области полезны для определения ориентации объекта. Отношение длин этих осей, называемое эксцентриситетом области, также является важным дескриптором для описания формы области.
Периметром области называется длина ее границы. Хотя иногда периметр применяется как дескриптор, чаще он используется для определения меры компактности области, равной квадрату периметра, деленному на площадь. Отметим, что компактность является безразмерной величиной (и поэтому инвариантна к изменению масштаба) и минимальной для поверхности, имеющей форму диска.
Связной называется область, в которой любая пара точек может быть соединена кривой, полностью лежащей в этой области. Для множества связных областей (некоторые из них имеют отверстия) в качестве дескриптора полезно использовать число Эйлера, которое определяется как разность между числом связных областей и числом отверстий. Например, числа Эйлера для букв А и В соответственно равны 0 и —1. Другие дескрипторы области рассматриваются ниже.
Текстура.
Во многих случаях идентификацию объектов или областей образа можно осуществить, используя дескрипторы текстуры. Хотя не существует формального определения текстуры, интуитивно этот дескриптор можно рассматривать как описание свойств поверхности (однородность, шероховатость, регулярность). Двумя основными подходами для описания текстуры являются статистический и структурный. Статистические методы дают такие характеристики текстуры, как однородность, шероховатость, зернистость и т. д. Структурные методы устанавливают взаимное расположение элементарных частей образа, как, например, описание текстуры, основанной на регулярном расположении параллельных линий.
Скелет области.
Важным подходом для описания вида структуры плоской области является ее представление в виде графа. Во многих случаях для этого определяется схема (скелет) области с помощью так называемых прореживающих (или же сокращающих) алгоритмов. Прореживающие процедуры играют основную роль в широком диапазоне задач компьютерного зрения — от автоматической проверки печатных плат до подсчета асбестовых волокон в воздушных фильтрах. Скелет области можно определить через преобразование средних осей (ПСО), предложенное в работе. ПСО области R с границей В определяется следующим образом. Для каждой точки р из R мы определяем ближайшую к ней точку, лежащую на В. Если р имеет больше одной такой точки, тогда о ней говорится, что она располагается на средней оси (скелете) области R. Важно отметить, что понятие «ближайшая точка» зависит от определения расстояния, и поэтому на результаты операции ПСО будет влиять выбор метрики. Хотя ПСО дает довольно удовлетворительный скелет области, его прямое применение затруднительно с вычислительной точки зрения, поскольку требуется определение расстояния между каждой точкой области и границы. Был предложен ряд алгоритмов построения средних осей, обладающих большей вычислительной эффективностью. Обычно это алгоритмы прореживания, которые итеративно устраняют из рассмотрения точки контура области так, чтобы выполнялись следующие ограничения:
1) не устранять крайние точки;
2) не приводить к нарушению связности;
3) не вызывать чрезмерного размывания области.
Дата: 2019-07-24, просмотров: 206.