Информатизация общества: современные реалии
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Неботова

Виталия Дмитриевича

Научные руководители:

по информатике:

зав. кафедрой информационных

технологий в обучении и управлении

д.п.н., профессор

Брановский Ю.С.

по математике:

зав. кафедрой алгебры и теории чисел,

к.ф.-м.н., доцент

Рябогин А.К.

 

Ставрополь 1998 г.

СОДЕРЖАНИЕ:

Стр.

 

Введение............................................................................................................3

Глава I: Информационные технологии в обществе и образовании................6

Информатизация общества: современные реалии......................................6

Аспекты применения СНИТ в образовании................................................9

Типология педагогических программных средств....................................14

Необходимые условия успешного применения ППС................................18

Глава II: Этапы создания электронного учебника.........................................22

Порядок разработки обучающих мультимедиа систем.............................22

Принципы изложения материала...............................................................32

LinkWay.......................................................................................................37

Action...........................................................................................................40

ToolBook......................................................................................................42

Delphi...........................................................................................................46

Реализованные и потенциальные возможности учебника........................51

Глава III: Содержание электронного учебника.............................................54

Главы электронного учебника....................................................................54

Теоретический материал электронного учебника.....................................56

Контрольные вопросы.................................................................................67

Практические задания.................................................................................69

Заключение......................................................................................................72

Приложение.....................................................................................................75

Список использованной литературы..............................................................85

ВВЕДЕНИЕ

 

Современный период развития цивилизованного общества характеризует процесс информатизации.

Информатизация общества – это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности в сфере общественного производства является сбор, накопление, продуцирование, обработка, хранение, передача и использование информации, осуществляемые на основе современных средств микропроцессорной и вычислительной техники, а также на базе разнообразных средств информационного обмена. Информатизация общества обеспечивает:

активное использование постоянно расширяющегося интеллектуального потенциала общества, сконцентрированного в печатном фонде, и научной, производственной и других видах деятельности его членов,

интеграцию информационных технологий с научными, производственными, инициирующую развитие всех сфер общественного производства, интеллектуализацию трудовой деятельности;

• высокий уровень информационного обслуживания, доступность любого члена общества к источникам достоверной информации, визуализацию представляемой информации, существенность используемых данных.

Применение открытых информационных систем, рассчитанных на использование всего массива информации, доступной в данный момент обществу в определенной его сфере, позволяет усовершенствовать механизмы управления общественным устройством, способствует гуманизации и демократизации общества, повышает уровень благосостояния его членов. Процессы, происходящие в связи с информатизацией общества, способствуют не только ускорению научно–технического прогресса, интеллектуализации всех видов человеческой деятельности, но и созданию качественно новой информационной среды социума, обеспечивающей развитие творческого потенциала индивида.

Одним из приоритетных направлений процесса информатизации современного общества является информатизация образования – внедрение средств новых информационных технологий в систему образования. Это сделает возможным:

совершенствование механизмов у­правления системой образования на основе использования автоматизированных банков данных научно– педагогической информации, информационно-методических материалов, а также коммуникационных сетей;

совершенствование методологии и стратегии отбора содержания, методов и организационных форм обучения, соответствующих задачам развития личности обучаемого в современных условиях информатизации общества;

• создание методических систем обучения, ориентированных на развитие интеллектуального потенциала обучаемого, на формирование умений самостоятельно приобретать знания, осуществлять информационно–учебную, экспериментально – исследовательскую деятельность, разнообразные виды самостоятельной деятельности по обработке информации;

• создание и использование компьютерных тестирующих, диагностирующих, контролирующих и оценивающих систем.

В своей дипломной работе я рассмотрел одну из сторон процесса информатизации общества и образования ­– создание и использование на практике одной из форм обучения с использованием средств новых информационных технологий (НИТ) – электронного учебника. В ней исследуются возможности средств новых информационных технологий, условия, необходимые для их успешного использования, рассматривается и анализируется прикладное программное обеспечение необходимое для создания и дальнейшего использования электронных учебников. Кроме этого, описываются все этапы создания подобных электронных приложений с учетом специфики конкретного учебного предмета (математики).

Работа состоит из трех глав: в первой кратко рассматриваются современные реалии информатизации общества, аспекты применения СНИТ в высшем образовании и классификация ППС; вторая глава посвящена этапам разработки и создания электронного учебника, также, в нее входит анализ наиболее популярных авторских систем традиционно используемых для разработки электронных приложений; в третьей главе описан математический аппарат легший в основу электронного учебника: теоретический материал с контрольными вопросами, примеры решений заданий и задания для самостоятельной работы.

 

Глава I : Информационные технологии в обществе и образовании

 

LinkWay

 

1. Название системы: LinkWay.

2. Разработчик: IBM Company.

3. Операционная система: MS-DOS.

4. Назначение системы LinkWay:

– разработка демонстрационных роликов по различным темам;

– построение уроков в гипертекстовой манере;

– организация персональной базы данных и настольной канцелярии;

– управление внешними устройствами;

– построение оболочки ОС или пакетов прикладных программ;

5. LinkWay позволяет осуществить дифференцированный подход к каждому обучаемому и моделировать достаточно широкий круг процессов. С помощью LinkWay можно реализовывать различные виды движения: демонстрация раскрывания лепестков цветка, изменение длин сторон треугольника в процессе изменения его углов, показ полета облаков на небе, показ различных регионов на карте разным цветом, изменение цвета заходящего на горизонте солнца или колебания маятника. Также присутствует возможность воспроизведения звуков и музыки.

Основным понятием системы LinkWay является фолдер – базовое рабочее пространство создаваемого в LinkWay приложения. Фолдеры можно соединять, линковать и т.д. Фолдеры делятся на страницы – экраны с содержащейся на них информацией. В каждом фолдере содержится базовая страница с общей информацией для всех страниц. Остальные страницы нумеруются по порядку. При визуализации страницы на экране монитора изображение текущей страницы накладывается на базовую страницу. Таким образом, элементы, общие для всех страниц, можно вынести на базовую страницу, и они автоматически будут присутствовать на всех страницах фолдера. Информация, которую содержат в себе страницы, представлена в форме объектов. Различают следующие типы объектов:

– картинка (graphics) – графическое изображение, занимающее прямоугольный участок экрана. Использование объектов этого типа позволяет сделать разрабатываемую программу более живой и привлекательной. Для задания этого объекта нужно указать место и размер окна, и полное имя файла с графическим изображением.

– текстовое поле (field) – прямоугольная область экрана, содержащая информацию в текстовом виде. При создании объекта типа текст необходимо задать количество символов в строке, количество строк в тексте, шрифт и цвет символов.

– кнопка (button) – объект, так же занимающий участок страницы, но в отличие от первых двух типов объектов, может не иметь визуального представления. Это позволяет создавать на странице невидимые кнопки. Кнопки могут также накладываться на картинки и тексты. Если кнопки не имеют собственных графических образов, то изображение объекта не измениться.

При наложении объектов разных типов они проявляются или экранируют друг друга. Текстовые поля и кнопки являются прозрачными объектами. С их помощью можно организовывать работу с информацией в гипертекстовом режиме. Объекты в LinkWay могут иметь имена: это полезно когда планируется реакция различных объектов на действия пользователя – можно вызывать объект по его имени.

В LinkWay имеется также набор графических примитивов: линий, ломаных, прямоугольников и т.д., которые можно использовать при оформлении программы.

6. К недостаткам данной авторской системы можно отнести следующие:

– ориентированность системы на ОС MS-DOS;

– крайне ограниченный набор объектов и визуальных эффектов;

­– бедная палитра цветов и графика низкого разрешения;

– отсутствие стандартного интерфейса;

– невозможность добавления новых элементов к уже существующим;

– отсутствие поддержки TrueType шрифтов, как следствие, крайне маленький выбор стиля шрифта и его размера;

– невозможность создания исполнимых модулей, которые могли бы работать независимо от наличия самой системы LinkWay.

 

 

Action

 

1. Название: Action 2.5.

2. Разработчик: Asymetrix company

3. Операционная система: Windows’95.

4. Назначение:

– создание презентаций различной тематики;

– подготовка демонстрационных и рекламных клипов;

– разработка обучающих и контролирующих программ;

5. Action объектно-ориентированная среда, позволяющая соединять в одном продукте практически все объекты мультимедиа технологии. Как и в LinkWay, в Action есть возможность вставлять в программу статический текст, графические изображения, управляющие объекты – кнопки. Помимо этого добавлена возможность представления звука как объекта: им можно управлять точно также как и другими объектами, появился и новый тип объекта – анимационный. Это дало возможность резко увеличить эффективность создаваемых приложений, так как анимационные вставки оказывают на пользователя гораздо более выраженное воздействие, нежели просто статичная картинка или текст.

Одним из качественных изменений стало появление в Action системы реального времени. Если в LinkWay содержимое страницы представляло собой раз и на всегда застывшее скопление объектов, то в Action, объекты «живут» практически полноценной жизнью: появляются в какой-то момент времени, существуют определенное время, и также исчезают с экрана, когда приходит их время. Такой подход к созданию приложений позволяет придать им большей гибкости и динамизма. Благодаря ему стало возможным контролировать время ответа студента, длину музыкального фрагмента, скорость появления изображения. Временная шкала (Timeline) позволяет легко контролировать и редактировать все временные характеристики объектов, наглядно представляя их в виде цветных полос различной длины.

По сравнению с LinkWay упрощена структура создаваемого приложения. Отсутствуют такие понятия как фолдер и базовая страница – вместо них используется понятие сцены – экран, существующий определенное время и содержащий различные объекты, каждый из которых также имеет свои временные рамки. Сцены могут сменять друг друга как последовательно, так и в заранее заданном порядке. Длина сцены может варьироваться в пределах от десятых долей секунды до нескольких часов, причем существует возможность зацикливать какой-то отрезок времени, что заставит сцену выполняться бесконечно, пока не будет получен сигнал или ответ от пользователя.

Благодаря тому, что система Action разработана для использования под Windows, она обладает достаточно развитыми средствами для обработки графических изображений: добавлена поддержка графических режимов высокого разрешения, импорт графических файлов с расширениями .DIB, .BMP, .WMF, .PAL. Расширен набор звуковых форматов: добавлена возможность воспроизведения наборов команд MIDI и проигрывание компакт-дисков в формате CD Audio. Это позволяет более качественно озвучить создаваемую программу, что вплотную приближает ее к стандарту мультимедиа.

Немаловажным моментом является наличие в среде Action довольно большого набора различных визуальных эффектов: это украшает разработанный проект, придает ему дополнительную привлекательность, и повышает общее качество продукта.

Большим прогрессом на пути объектно-ориентированного программирования стало появление у объектов собственных свойств. Задавая различные свойства объектам одного типа можно получить два совершенно не похожих элемента. Благодаря этому дизайн и интерфейс создаваемых приложений поднялся на качественно новую ступень. Появилась возможность создавать дружественные и интуитивно-понятные интерфейсы. Это является большим плюсом среды Action.

6. К минусам можно отнести следующее:

– сильно увеличившаяся система всевозможных меню;

– ограничение цветовой гаммы 256-ю цветами;

– не предусмотрена возможность ввода информации пользователем;

– отсутствие средств расширения существующих возможностей;

– невозможность создания исполнимых модулей, которые могли бы работать независимо от наличия самой среды Action.

­– наличие в рассматриваемой версии (Action 2.5) небольших программных огрех.

 

 

ToolBook

 

1. Название: Multimedia ToolBook.

2. Разработчик: Asymetrix company.

3. Операционная система: Windows’95

4. Назначение:

– создание диалоговых сопровождений;

– реализация интерактивного обучения;

– разработка документов представленных в нескольких средах (гиперсреда);

– программирование баз данных и баз знаний;

5. Система ToolBook является еще более разветвленной, гибкой и мощной средой разработки приложений по сравнению с Action. Помимо возможностей, существующих в Action, в ToolBook добавлено множество новых возможностей, благодаря которым эта среда может с успехом применяться для создания профессиональных мультимедиа-приложений. Здесь на более качественном уровне разработана поддержка графических режимов, звукового и музыкального сопровождения, видеоданных в различных форматах. Используя систему Multimedia ToolBook можно добиваться нестандартных графических и цветовых решений, благо палитра в 16,7 миллионов цветов и поддержка SVGA–режимов позволяет воплотить на экране любую фантазию. Стандартный набор поддерживаемых звуковых и музыкальных форматов WAVE и MIDI файлов, расширен и теперь позволяет также проигрывать компакт-диски стандарта CD Audio. К новшествам обработки видеоизображения относится возможность использовать в разрабатываемых приложениях помимо стандартных AVI–файлов, видеозапись в форматах MOV и MPQ. Все это служит улучшению внешнего вида приложений, увеличению их функциональности, и, в конечном счете, к общему повышению качества разрабатываемых мульти­­медиа­­-приложений.

К очень полезным качествам системы Multimedia ToolBook относится реализованная в ней возможность создавать гипертекстовые приложения. Страницы таких приложений связаны через «горячие» слова и кнопки, что позволяет каждому читателю изучать некоторый предмет в темпе определенном его индивидуальными способностями. Достоинством любого гиперприложения является обеспечиваемый им гибкий информационный доступ. Контекстно-вызываемая информация, использование звука и видеоизображения позволяет гиперсреде расширить возможности информационного воздействия на читателя.

В ранее рассматриваемых средах и авторских системах существовали объекты того или иного типа, размещая которые на страницы создаваемого приложения можно было получать графические или текстовые кадры. По сравнению с ними система Multimedia ToolBook шагнула далеко вперед. В ней появилось понятие визуальной компоненты – стандартного объекта Windows’95 имеющего визуальное представление, набор изменяющихся свойств и способного воспринимать и реагировать на события, как внутренние, так и на события исходящие от пользователя. На самом деле это революционный шаг.

Как следствие, в среде Multimedia ToolBook присутствуют палитры компонент и обработчик событий. Первое понятие представляет собой панель, содержащую графическую интерпретацию компонент. Теперь даже не обязательно знать название каждой компоненты и искать ее название в длинных меню ­– достаточно выбрать ее изображение на палитре компонент и точно такая же появится у Вас на странице приложения. Такой подход является преобладающим в Multimedia ToolBook, кроме палитры компонент существуют палитра инструментов, цветовая палитра, графическая и некоторые другие. Обработчик событий представляет собой специфический модуль, в котором разработчик указывает каким образом тот или иной объект на странице будет реагировать на то или иное событие: исчезать или появляться, менять цвет или положение на экране, просто закрывать программу. Как уже было сказано, все это позволяет идейно обогатить создаваемые учебные и мультимедиа­-приложения.

К новым возможностям относится также и возможность создания прототипа будущего проекта. Прототип может быть простой оболочкой, которая приближенно отвечает идее проекта, или программным продуктом. Проектирование с использованием прототипов позволяет тестировать продукты на более ранних стадиях.

В системе Multimedia ToolBook присутствует встроенный язык описания сценариев OpenScript. Он необходим для интерпретации системой действий пользователя. На нем описываются возможные действия приложения, реакция на происходящие события. Кроме этого предусмотрено использование библиотек динамической компоновки (технология DLL) и стандарта DDE, который реализует коммуникационный протокол Windows’95 и обеспечивает интеграцию нескольких приложений. Это позволяет вызывать из написанных пользователем приложений любую другую программу, поддерживающую данный протокол, будь то Word, Excel или универсальный проигрыватель, обеспечивая тем самым интегрированность разрабатываемых приложений.

6. При наличие большого числа плюсов и новых возможностей трудно выделить недостатки продукта, которые в небольшом количестве, но все же присутствуют в Multimedia ToolBook:

– сравнительно небольшой набор визуальных компонент – чуть более десяти (в Delphi для сравнения их почти полторы сотни);

– неоправданно большое количество всевозможных меню, затрудняющих на первых порах работу с системой;

– псевдообъектно-ориентированность среды Multimedia ToolBook, при которой объекты присутствуют, но не поддерживаются основные концепции объектно-ориентированного программирования;

 

 

Delphi

 

1. Название: Delphi 3.0.

2. Разработчик: Borland International company.

3. Операционная система: Windows’95.

4. Назначение:

– разработка многооконных пользовательских приложений;

– создание многофункциональных систем общего назначения;

– проектирование баз данных любой сложности и средств управления БД;

– разработка систем обработки текстовой, графической, видеоинформации и звука;

– создание графической операционной оболочки;

– написание прикладных программ и библиотек динамической компоновки;

– создание одно- и многопользовательских интерфейсов;

– разработка сетевых приложений;

– разработка мультимедийных приложений и средств разработки мультимедийных приложений;

– написание программ с использованием средств Internet;

и многое другое.

5. Сравнивая Delphi с вышеописанными системами LinkWay, Action, Multimedia ToolBook я признаю, что такое сравнение не совсем правомерно. Дело в том, что вышеперечисленные системы являются авторскими, то есть созданы для людей, незнакомых глубоко с программированием на каком бы то не было языке, и разрабатывающих при этом работоспособные приложения. С Delphi ситуация несколько иная: это – система программирования, базирующаяся на языке программирования (Object Pascal), имеющая свой редактор, компилятор и отладчик. Написание приложения на Delphi сводится к компоновке на экране объектов, имеющих определенную графическую интерпретацию, и подключению строк кода, как и в программе на любом другом языке. Другими словами, Delphi просто реализует визуальную концепцию программирования. Поэтому этот сравнительный анализ и кажется мне не совсем правомерным.

Однако вместе с тем, система Delphi предназначена для тех же целей (или может использоваться в тех же целях) что программирования и рассмотренные авторские системы. Назначение и визуальная концепция программирования – то, что объединяет такие среды как LinkWay, Action, Multimedia ToolBook с Delphi. Именно на этих основаниях я попытался построить свой анализ.

Итак, Delphi – это не просто редактор и компилятор. Это могучая среда разработки, значительно облегчающая участь разработчика приложений.

В течение многих лет людей занимающихся разработкой приложений вполне устраивали традиционные средства программирования, включающие редактор, компилятор и отладчик. Windows–ориентированные системы разработки, такие как Action, Multimedia ToolBook добавили к этому набору визуальные методы создания интерфейса программ и автоматическую генерацию соответствующего программного кода. Delphi, вобрав в себя все эти черты, идет еще дальше. Например, интерфейс прикладного программирования (API) позволяет писать такие утилиты, которые включаются в интегрированную среду разработки Delphi. Где еще можно встретить такое?

Многие языки и среды разработки приложений являются псевдообъектно-ориентированными – они используют объекты и методы, но не поддерживают основные концепции объектно-ориентированного программирования, таких как инкапсуляция, наследование и полиморфизм. Delphi лишена этого недостатка. Это настоящий объектно-ориентированный язык, который позволяет объединять данные и код в один класс, создавать дочерние классы и обращаться с классами-потомками, как с родительскими классами.

Легко заметить, что элементы экрана, составляющие приложения Windows, довольно просты. Возьмем в качестве примера стандартную кнопку – обычно она представлена в виде выступающего серого прямоугольника, на поверхности которого написан текст, соответствующий названию данной кнопки. Delphi «берет» функциональность кнопки – ее способность отвечать на щелчок мышью и отображать некоторый текст – и «подает» ее в виде объекта известного как компонент. Компоненты хранятся в библиотеке компонентов, содержащей все объекты, необходимые для создания полноценных программ, использующих интерфейс Windows.

Объектно-ориентированная природа Delphi делает библиотеку компонентов необычайно гибкой. Если объекту требуется дополнительная функциональность либо требуется модифицировать поведение компонента, можно наследовать новый компонент из того, который уже храниться в библиотеке, и добавить ему новых свойств.

Теперь, когда программирование стало заключаться в простом манипулировании компонентами и объектами, появляются шаблоны, которые даже эту задачу делают тривиальной. Delphi оперирует четырьмя типами шаблонов: формами, приложениями, компонентами и кодами. Шаблоны формы, приложения и компонента дают возможность повторно использовать созданные ранее коллекции объектов либо в отдельных программах, либо в качестве основы для новой программы. Шаблон кода – это новое средство, которое значительно уменьшает потребности во вводе повторяющихся фрагментов кода.

У Delphi есть еще одно приятное отличие. Многие системы разработки приложений для Windows либо вовсе не генерируют исполняемый код, либо генерируют код-полуфабрикат, или р-код, который не может быть выполнен процессором без дополнительной трансляции во время работы самой программы, что существенно снижает производительность компьютера. Потери времени процессора при преобразовании графических файлов просто трудно себе представить. Delphi же использует настоящий компилятор и компоновщик и генерирует стопроцентный машинный код. Такая реализация лишена непроизводительных затрат, что особенно важно для масштабных мультимедийных программ сегодняшнего дня, которые требуют наличия высокопроизводительных систем.

Использование стопроцентной компиляции дает еще одно преимущество, заключающееся в создании библиотек динамической компоновки (DDL), которые могут содержать любые компоненты из библиотеки компонентов. Затем эти библиотеки можно использовать в собственных приложениях Delphi или распространять как независимые компоненты для других программ.

Нельзя не сказать и о новом подходе к обработке ошибок. Многим разработчикам, программировавшим на других языках, приходилось сталкиваться с необходимостью обработки ошибок и защиты ресурсов. Прежний подход к решению этих задач состоял в выполнении функции с последующим анализом результата. В случае получения кода успешного завершения операции выполнялись некоторые действия и вновь анализировался результат. Этот процесс продолжался до тех пор, пока не исчерпывался исходный код программы. Delphi искусно справляется с проблемой обнаружения ошибок благодаря реализации концепции исключительных ситуаций. Вместо того чтобы работать в предположении, что каждый шаг может привести к сбою, потенциальное выявление которого требует соответствующего тестирования, Delphi позволяет писать программу, исходя из успешного выполнения всех ее операторов. В случае возникновения отказа Delphi вызывает исключительную ситуацию, которая перехватывается одним-единственным обработчиком исключительных ситуаций. Такой подход позволяет программе достойно справится с ошибкой, причем от разработчика в этом случае требуются минимальные усилия.

Нельзя обойти стороной и то, как в Delphi представлены средства создания и управления базами данных. Статистика утверждает, что большинство приложений так или иначе связаны с базами данных. И это неудивительно, ведь где еще компьютеру показать себя во всей красе, как не в области сбора, обработки и представления данных. Если данных много (или очень много), разработчики используют для их хранения именно базы данных. Delphi предоставляет в распоряжение пользователя объекты и компоненты, которые значительно уменьшают трудовые затраты на создание такого рода приложений. Убедительным примером этого служит тот факт, что с помощью Delphi можно создать программу ведения баз данных, не написав ни строки программного кода.

6. Обычно в этом пункте я перечислял недостатки и ограничения рассматриваемой среды или авторской системы, но в случае с Delphi нет ничего подобного. Дело не в том, что Delphi – самое последнее достижение на ниве визуального программирования, не в том, что целым рядом очень серьезных изданий она признана продуктом высшего качества, неоднократно награждена всевозможными наградами, и даже не в том, что сотни тысяч разработчиков и обычных пользователей единогласно выбирают эту систему программирования для создания собственных приложений. Дело, по-видимому, в том, что Delphi объективно лишена сколько-нибудь заметных недостатков. Мне таковых отыскать не удалось. Именно это обстоятельство явилось решающим при выборе средств реализации моего электронного учебника.

 

 

Глава III : Содержание электронного учебника

 

Главы электронного учебника

 

Задумывая идею компьютерного учебника по математике, преследовались несколько целей:

во-первых, предоставить студентам, изучающим математику эффективное и легкодоступное средство обучения, которое включало бы в себя теоретический материал, вопросы и практические задания, и выполняло бы не только обучающую, но и контролирующую и оценивающую функции;

во-вторых, провести анализ теоретического материала предлагаемого к компьютерной реализации с целью определения его пригодности к подобной реализации и степень ее эффективности;

в-третьих, продолжить, и в чем то оживить, процесс внедрения средств новых информационных технологий в область преподавания математики, ускорить интеграцию математических и информационных дисциплин;

и в-четвертых, хотелось предоставить нашему университету полноценное программное обеспечение, которое сможет применяться при обучении математике на младших курсах, и которым смогут пользоваться сотни студентов;

Исходя из перечисленных целей были рассмотрены и выбраны несколько тем наиболее пригодных для компьютерной реализации в виде электронного учебника. Среди них:

– Тождественные преобразования;

– Элементы аналитической геометрии;

– Элементы логики и теории множеств;

– Числовые системы;

– Матрицы;

Все эти разделы входят в учебный план студентов I курса обучающихся на специальности «информатика – иностранный язык» и представляют большой интерес в смысле компьютерного представления именно для студентов этой специальности.

Первой для переноса на компьютерную основу была взята тема «Числовые системы». Выбор этой темы был обоснован мною ранее. На данный момент эта тема практически полностью реализована в электронном учебнике и может применяться на практике. Над разделами «Тождественные преобразования», «Элементы аналитической геометрии», «Элементы логики и теории множеств», «Матрицы» сейчас ведется работа с целью скорейшего включения их в состав учебника.

Из того что уже сделано, хочется выделить систему помощи и подсказок разработанную для «Числовых систем». Она позволит студентам лучше ориентироваться в излагаемом материале, получать своевременную помощь в затруднительной ситуации, позволит избежать многих ошибок. Суть ее заключается в том что, видя новое определение или термин, студент может обратиться к этой системе и получить разъяснение или рекомендацию. Не обделялись вниманием те, на первый взгляд, простые моменты, на которых студенты чаще всего ошибаются, где за видимой простотой скрывается более глубокий смысл. Практика показывает острую необходимость такого подхода к изложению нового материала.

 

 

ЧИСЛОВЫЕ СИСТЕМЫ

 

Множество натуральных чисел

Определение: Множество называется числовым, если его элементами являются числа.

Известны следующие числовые системы:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел;

R - множество действительных чисел;

С - множество комплексных чисел.

Между этими множествами установлены следующие отношения:

N Ì Z Ì Q Ì R Ì C.

В основе расширения числовых множеств лежат следующие принципы: если множество А расширяется до множества В, то:

1) А Ì B;

2) операции и отношения между элементами, выполнимые во множестве А, сохраняются и для элементов множества В;

3) во множестве В выполняются операции, не выполнимые или частично выполнимые во множестве А;

4) множество В является минимальным расширением множества А, обладающим свойствами 1) – 3).

 

Минимальность расширения множества А обладающее свойствами 1–3 понимается в том смысле, что: 1. выполняются свойства 1–3; 2. В – наименьшее множество для которого выполняются свойства 1–3 и для которого выполняется операция невыполнимая или частично выполнимая во множестве А.

 

Множество натуральных чисел N строго определяется с помощью аксиом Пеано.

1. Существует натуральное число 1, не следующее ни за каким натуральным числом (натуральный ряд начинается с 1).

2. Каждое натуральное число следует только за одним и только одним натуральным числом (в натуральном ряду нет повторений).

3. За каждым натуральным числом следует одно и только одно натуральное число (натуральный ряд бесконечен).

4. Аксиома индукции. Пусть М Ì N. Если:

1) 1 Î М;

2) " а Î М множеству М принадлежит и следующий за а элемент а1 то множество М совпадает с множеством натуральных чисел.

Итак, множество N = { 1, 2, 3, 4,...}.

На аксиоме 4 основан метод математической индукции. Доказательство различных утверждений этим методом проводится от частного к общему, а затем делается вывод о справедливости данного утверждения.

П р и м е р. Доказать методом математической индукции следующее равенство:

Д о к а з а т е л ь с т в о.

1. Проверим справедливость данного утверждения для n = 1: , т.е. 1 = 1.

 

Проверка при n =1 ОБЪЯЗАТЕЛЬНА!

 

2. Предположим, что данное равенство выполняется для k слагаемых, т.е. при  n =k:

3. На основании предположения 2 докажем справедливость данного равенства для n = k+1:

Ho , а потому , а так как , следовательно

Теперь можно сделать вывод о том, что данное равенство справедливо " n Î N.

Множество целых чисел

Во множестве натуральных чисел выполняются операции сложения и умножения, но не всегда выполняется операция вычитания. Расширяя множество N так, чтобы эта операция была выполнима, мы получаем множество целых чисел Z.

 

Расширяя – определяя новую алгебраическую операцию.

 

 Поэтому Z=N È {0, -1, -2,...} или Z={...-3, -2, -1, 0, 1, 2, 3,...}, т.е. множество целых чисел Z содержит множество натуральных чисел, число нуль и числа, противоположные натуральным.

Основную роль во всей теории целых чисел играют следующие факты.

Т е о р е м а  о  д е л е н и и  с  о с т а т к о м. Для любого целого а и b > 0 существуют и притом единственные целые q и r , такие, что а = bq + r, 0 £ r < | b |.

О п р е д е л е н и е. Натуральное число р называется простым, если р > 1 и р не имеет положительных делителей, отличных от 1 и р.

О с н о в н а я  т е о р е м а  а р и ф м е т и к и. Для каждого натурального числа n > 1 существует единственное разложение на простые множители: , где p1, p2, ..., pk – простые числа, а - натуральные числа. Разложение  называется каноническим.

 

Единственность разложения понимается с точностью до порядка следования сомножителей. Например . Если сказано, что простые числа расположены в порядке возрастания, то данная оговорка не нужна.

 

О п р е д е л е н и е. 1) Общим делителем целых чисел а 1 , а 2 , ..., а n называется целое число d , такое, что a1 : d, а 2 : d, ... , а n : d. 2) Наибольшим общим делителем целых чисел а 1 , а 2 , ..., а n называется такой положительный общий делитель чисел а 1 , а 2 , ..., а n , который делится на любой другой общий делитель этих чисел.

 

Наибольший общий делитель – это наибольший из их общих делителей.

 

Обозначается: d = ( а 1 , а 2 , ..., а n ).

Наибольший общий делитель целых чисел а и b может быть найден с помощью алгоритма Евклида, в основе которого лежит теорема о делении с остатком. Последний, отличный от нуля, остаток и будет наибольшим общим делителем чисел а и b.

П р и м е р. Найти НОД чисел 1173 и 323. Последовательным делением находим:

1173 = 323´3 + 204;

323=204´1+119;

204=119´1+85;

119=85´1+34;

85=34´2+17;

34=17´2;

так что (1173, 323) = 17.

О п р е д е л е н и е. Наименьшим общим кратным целых чисел а 1 , а 2 , ..., а n , отличных от нуля, называется наименьшее положительное число, кратное всем этим числам.

 

Наименьшее общее кратное – это наименьшее из их общих кратных.

 

Обозначают: m=[ а 1 , а 2 , ..., а n].

Пусть а и b целые числа, тогда

П р и м е р. Найти HOK чисел 1173 и 323.

Т.к. (1173, 323) = 17, то [1173, 323] =

Система комплексных чисел

Однако действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение с действительными коэффициентами. Например, уравнение вида х2 + 1= 0 действительных корней не имеет. А это означает, что система действительных чисел нуждается в расширении.

О п р е д е л е н и е. Множество чисел вида а + bi, а, b Î R, i2 = - 1, называется системой комплексных чисел С.

 

Подчеркнем, что в отличие от множества действительных чисел (R), множество комплексных чисел (С) с операциями определенными на нем не обладает свойством упорядоченности, так как имеется элемент , в частности, нельзя определить понятие быть положительным.

 

а - действительная часть комплексного числа, bi - мнимая часть комплексного числа, i =  - мнимая единица, b - коэффициент при мнимой единице. Запись числа в виде z = а + bi называется алгебраической. Комплексное число z = а + bi равно нулю тогда и только тогда, когда а = 0 и b = 0. Два комплексных числа z1 = а 1 + b1i и z2 = а 2 + b2i называются равными, если а 1 = a2, и b1 = b2, в этом случае пишут: z1 = z2.

Число  = а - bi называется сопряженным для числа z = а + bi, при этом числа z и  называются взаимно сопряженными. Например, числа z = 2 + i и z = 2 - i; z = -5 - i и z = -5 + i, z = i и z = -i будут взаимно сопряженными.

Арифметические действия над комплексными числами проводятся по следующим правилам. Пусть z1= а 1 +b1i z2= а 2 + b2i. Тогда: ; ;

. Таким образом, видим, что если z= a+bi и =a-bi, то z = a2+b2.

П р и м е р ы. Выполнить действия:

1. (2 + 3i) + (8 - 5i) = 10 - 2i.

2. (-1 - i) - (2 + 3i) = -3 - 4i.

3. (10 - i)(2 + i) = 21+8i.

4. .

Геометрически комплексные числа можно изображать точками плоскости, абсциссами которых служат действительные части, а ординатами - коэффициенты при мнимой единице. Таким образом, если z= a+bi, то на плоскости ХОУ это будет точка М(а, b). Так как любой вектор плоскости с началом в точке O(0,0) определяется координатами конца, то комплексные числа также изображают радиус – векторами (рис. 1).

Рис. 1

Кроме алгебраической формы комплексное число может быть записано с помощью тригонометрической формы. Введем следующие определения.

О п р е д е л е н и е. Модулем комплексного числа z = а+ b i называется арифметический квадратный корень из суммы квадратов его действительной части и коэффициента при мнимой единице: |z| = r = .

О п р е д е л е н и е. Аргументом комплексного числа z = а + bi называется число , для которого .

Возьмем на плоскости точку М(а, b ), пусть ей соответствует комплексное число z = а + bi. Обозначим через j угол, который образует радиус – вектор ОМ с положительным направлением оси ОХ.

 

Из  D ОМА (рис.2) AO = OMcosj, AM = ОМsinj, но ОМ=  = г, ОА =а; AM =b; тогда z = а + bi = rcos j + ir sin j = r(cos j + isin j ).

Запись числа z = r(cos j + isin j ) называется тригонометрической формой комплексного числа.

С геометрической точки зрения, модуль комплексного числа представляет собой длину радиус-вектора, который это число изображает, а аргумент - это угол, который образует данный радиус-вектор с положительным направлением оси ОХ.

П р и м е р. Найти модуль, аргумент и записать число z = 1- i в тригонометрической форме.

Имеем r =  = ; cosj = ; sinj = ; тогда j =  и .

Используя тригонометрическую форму комплексного числа, умножение и деление комплексных чисел можно выполнять так: если , , то z1z2 = r1r2[cos ( j 1 + j 2 ) + isin ( j 1 + j 2 )], .

Операции же возведения в целую степень и извлечения корня удобнее проводить в тригонометрической форме. Так, для возведения в целую степень n комплексного числа z = r(cosj + isinj ) известна формула Муавра:

zn = rn(cos n j + isin n j ).

 

Отметим, что возведение комплексных чисел в натуральную степень можно выполнять и в алгебраической форме, просто перемножая число само на себя или воспользовавшись биномом Ньютона.

 

П р и м е р. Найти (2 + 2i)5.

Если z = 2 +2i, то r = , cosj = , sinj = , j = . Тогда

, а .

Для извлечения корня степени n Î N из комплексного числа z = =r(cos j + isin j ) используется следующая формула:

, k = 0, 1, 2, ..., n-1.

П р и м e p. Найти . Найдем тригонометрическую форму подкоренного выражения:

; ; ; ; .

, k = 0, 1, 2, 3.

;

;

;

.

 

 

Контрольные вопросы

 

После ознакомления с теоретическим материалом студентам предлагается ответить на несколько вопросов по данной теме. Это делается с целью закрепления нового материала и контроля его усвояемости. Форма ввода ответа на вопросы предполагает использование как классической кроудеровской системы, так и возможность ввода конструированного ответа, когда студент конструирует свой ответ из предложенных фрагментов. Система вопросов подбиралась с учетом следующих требований:

– широкий охват нового теоретического материала;

– разноплановость в смысле возможных вариантов ответов;

– отсутствие вопросов предполагающих ответы типа «да» – «нет» и ответов требующих пояснения.

Блок ответов на контрольные вопросы устроен таким образом, что дав ответ на первый вопрос, студенты могут перейти к последнему, затем вернуться назад и исправить первый ответ. Ответ, данный на вопрос, не исчезает, он остается доступным для редактирования и по прошествию некоторого времени. Во время ответа на вопросы доступ к теоретическому материалу не возможен. После получения ответов на все вопросы студентам предлагается закрыть сеанс ответов на вопросы и перейти к решению практических заданий. После этого момента вернуться к вопросам и что-либо исправить уже нельзя. По окончанию сеанса работы с учебником система проанализирует полученные ответы на предмет их правильности и полноты и выставит оценку по пятибальной шкале.

Ниже приводится схема вопросов предлагаемых студентам:

 

1. Дайте определение числового множества.

2. Какие числовые системы вам известны?

3. Какие принципы лежат в основе расширения числовых множеств?

4. Как определяется множество натуральных чисел?

5. Что собой представляет метод математической индукции?

6. Дайте определение множества целых чисел.

7. Какие основные факты теории целых чисел вам известны?

8. Как определяется множество рациональных чисел?

9. Дайте определение множества действительных чисел.

10. Дайте определение системы комплексных чисел.

11. Какие формы употребляются для записи комплексных чисел?

12. Какова геометрическая интерпретация комплексного числа, его модуля и аргумента?

13. Как умножаются, делятся и возводятся в степень комплексные числа, заданные в тригонометрической форме.

14. Как извлечь корень n-й степени из комплексного числа?

 

Каждый из вопросов предполагает только один правильный ответ, ответ, не совпадающий с правильным, считается неправильным.

После завершения ответов на вопросы студенты переходят к решению практических заданий.

 

Практические задания

 

Целью включения в учебник практических заданий являлось:

– выработка у студентов устойчивых навыков решения подобных заданий;

– закрепление на практике полученных теоретических знаний;

– оценка качества усвоения студентами нового материала;

– повторение и восстановление в памяти ранее изученного материала;

– выработка у студентов навыков компьютерного общения и самостоятельного решения задач в условиях ограниченного времени.

При подборе практических заданий учитывались следующие требования:

– всестороннее отражение в заданиях нового теоретического материала;

– сходность предлагаемых заданий с теми, что рассматривались ранее в виде решенных примеров;

– отсутствие примеров повышенной трудности или требующих нестандартного подхода;

– простота получаемых ответов и удобство их ввода и редактирования.

Ниже приводиться схема предлагаемых практических заданий:

1. По делимому а и остатку r найти делители b и соответствующие частные q, если:

а) a = 100; r = 6; б) а = 158; r = 37; в) a = 497; r = 16.

2. Найти наибольшее целое число, дающее при делении на b = 13 частное q = 17.

3. Найти НОД каждой из следующих систем чисел:

а) (120; 144); б) (424; 477); в) (299; 391; 667).

4. Найти НОК каждой из следующих систем чисел:

а) [120; 96]; б) [75; 114]; в) [118; 177;413].

5. Каким числом, рациональным или иррациональным, является значение выражения 8 - 5х при х = 0,6; 1,2; -3,4?

6.Среди чисел ; 0; 0,(25); ; 3,14; ; 0,818118111811118... укажите рациональные и иррациональные.

7. Выполнить указанные действия:

а) (2 + 3i) (4 - 5i) + (2 - 3i) (4 + 5i); б) .

8. Найти тригонометрическую форму комплексного числа:

а) i; б) -2; в) 1 + i; г) .

9. Вычислить:

а) ; б) ; в) .

10. Извлечь корни:

a) ; б) ; в) ; г) ; д) .

11. Упростить:

а) ; б) .

 

Предложенные задачи студенты решают у себя в тетради, а потом вводят полученные ответы в компьютер. По окончанию редактирования ответов студенты закрывают сеанс решения практических заданий и система переходит в режим оценки полученных ответов. После анализа выставляется оценка, которая показывается студенту и заносится в ведомость вместе с входными данными студента. Преподаватель, периодически просматривая ведомости (скажем, в конце дня) получает список всех студентов проходивших обучение в этот день и их оценки, может оперативно оценить успешность изложения темы и, если необходимо, принять меры по корректировке учебного процесса.

ЗАКЛЮЧЕНИЕ

 

В этой дипломной работе рассматривалась тема разработки электронных обучающих систем на примере электронного учебника по математике. Сейчас, когда идет повсеместное внедрение средств новых информационных технологий в высшую школу и образовательный процесс вообще, остро ощущается нехватка программных средств. Для усиления эффективности этого процесса необходимо наличие развитого и многоцелевого программного обеспечения, на основе которого будут строится новые подходы к обучению с применением СНИТ. В этих условиях тема моей дипломной работы, предмет ее исследования представляется очень своевременным. Актуальность этого вопроса продиктована самой ситуацией на рынке программного обеспечения, когда есть люди готовые и стремящиеся внедрять новые программно-методические разработки, новые формы и методы обучения на практике, а несбалансированность российского рынка прикладного обеспечения не позволяет использовать целиком богатый потенциал, заложенный в СНИТ. Поэтому разработку компьютерного учебного пособия по математике, которое могло бы применятся в обучении студентов, считаю своей первостепенной задачей.

В данной дипломной работе передо мной были поставлены следующие цели:

– предоставить студентам, изучающим математику эффективное и легкодоступное средство обучения, которое включало бы в себя теоретический материал, вопросы и практические задания, и выполняло бы не только обучающую, но и контролирующую и оценивающую функции;

– провести анализ теоретического материала предлагаемого к компьютерной реализации с целью определения его пригодности к подобной реализации и степень ее эффективности;

– продолжить, и в чем то оживить, процесс внедрения средств новых информационных технологий в область преподавания математики, ускорить интеграцию математических и информационных дисциплин;

– предоставить нашему университету полноценное программное обеспечение, которое сможет применяться при обучении математике на младших курсах, и которым смогут пользоваться сотни студентов;

Для достижения поставленных целей и решения предложенной задачи мною, была проделана следующая работа:

– рассмотрено современная ситуация в процессе компьютеризации нашего общества и конкретно процесса образования в высшей школе;

– проведена классификация существующих на данный момент компьютерных обучающих систем по их назначению и целям применения в образовании;

– выделены основные условия успешного применения средств НИТ в учебном процессе;

– детально изучена методика создания компьютерных обучающих мультимедиа систем, которая была в дальнейшем использована при разработке собственного компьютерного приложения;

– рассмотрены принципы изложения информации с точки зрения современных теорий психологии и дизайна;

– досконально изучены наиболее популярные инструментальные средства разработки мультимедиа приложений: IBM LinkWay, Action 2.5, Multimedia ToolBook  и среда программирования Borland Delphi 3.0;

– проведен сравнительный анализ этих инструментальных сред с целью выявления системы, наиболее отвечающей требованиям, предъявляемым при разработке учебника;

– проведен анализ теоретического материала предлагаемого к изучению студентам I курса отделения «информатика – иностранный язык» и выбран материал для первоочередной реализации в компьютерном учебнике;

– подобрана система контрольных вопросов для выявления уровня усвоения нового материала;

– подобрана система практических заданий предназначенных для закрепления изученного материала и выработке практических умений и навыков в решении подобных заданий;

– разработана система контекстно-вызываемых пояснений, призванная облегчить обучение студентов;

– разработан и реализован действующий фрагмент электронного учебника по математике, который может применяться при обучении студентов;

Практическую ценность своей работы вижу в том, что:

во-первых, мною был получен богатый опыт разработки обучающих компьютерных систем, в том числе освоены инструментальные средства разработки подобных систем;

во-вторых, и это главное, университет получит в свое распоряжение и сможет использовать в образовательном процессе новое электронное средство обучения – компьютерный учебник по математике.

В заключении хочется выразить свою благодарность моим научным руководителям Брановскому Юрию Сергеевичу и Рябогину Анатолию Константиновичу за практическую помощь в работе над электронным учебником и дипломным проектом.

ПРИЛОЖЕНИЕ А:

Неботова

Виталия Дмитриевича

Научные руководители:

по информатике:

зав. кафедрой информационных

технологий в обучении и управлении

д.п.н., профессор

Брановский Ю.С.

по математике:

зав. кафедрой алгебры и теории чисел,

к.ф.-м.н., доцент

Рябогин А.К.

 

Ставрополь 1998 г.

СОДЕРЖАНИЕ:

Стр.

 

Введение............................................................................................................3

Глава I: Информационные технологии в обществе и образовании................6

Информатизация общества: современные реалии......................................6

Аспекты применения СНИТ в образовании................................................9

Типология педагогических программных средств....................................14

Необходимые условия успешного применения ППС................................18

Глава II: Этапы создания электронного учебника.........................................22

Порядок разработки обучающих мультимедиа систем.............................22

Принципы изложения материала...............................................................32

LinkWay.......................................................................................................37

Action...........................................................................................................40

ToolBook......................................................................................................42

Delphi...........................................................................................................46

Реализованные и потенциальные возможности учебника........................51

Глава III: Содержание электронного учебника.............................................54

Главы электронного учебника....................................................................54

Теоретический материал электронного учебника.....................................56

Контрольные вопросы.................................................................................67

Практические задания.................................................................................69

Заключение......................................................................................................72

Приложение.....................................................................................................75

Список использованной литературы..............................................................85

ВВЕДЕНИЕ

 

Современный период развития цивилизованного общества характеризует процесс информатизации.

Информатизация общества – это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности в сфере общественного производства является сбор, накопление, продуцирование, обработка, хранение, передача и использование информации, осуществляемые на основе современных средств микропроцессорной и вычислительной техники, а также на базе разнообразных средств информационного обмена. Информатизация общества обеспечивает:

активное использование постоянно расширяющегося интеллектуального потенциала общества, сконцентрированного в печатном фонде, и научной, производственной и других видах деятельности его членов,

интеграцию информационных технологий с научными, производственными, инициирующую развитие всех сфер общественного производства, интеллектуализацию трудовой деятельности;

• высокий уровень информационного обслуживания, доступность любого члена общества к источникам достоверной информации, визуализацию представляемой информации, существенность используемых данных.

Применение открытых информационных систем, рассчитанных на использование всего массива информации, доступной в данный момент обществу в определенной его сфере, позволяет усовершенствовать механизмы управления общественным устройством, способствует гуманизации и демократизации общества, повышает уровень благосостояния его членов. Процессы, происходящие в связи с информатизацией общества, способствуют не только ускорению научно–технического прогресса, интеллектуализации всех видов человеческой деятельности, но и созданию качественно новой информационной среды социума, обеспечивающей развитие творческого потенциала индивида.

Одним из приоритетных направлений процесса информатизации современного общества является информатизация образования – внедрение средств новых информационных технологий в систему образования. Это сделает возможным:

совершенствование механизмов у­правления системой образования на основе использования автоматизированных банков данных научно– педагогической информации, информационно-методических материалов, а также коммуникационных сетей;

совершенствование методологии и стратегии отбора содержания, методов и организационных форм обучения, соответствующих задачам развития личности обучаемого в современных условиях информатизации общества;

• создание методических систем обучения, ориентированных на развитие интеллектуального потенциала обучаемого, на формирование умений самостоятельно приобретать знания, осуществлять информационно–учебную, экспериментально – исследовательскую деятельность, разнообразные виды самостоятельной деятельности по обработке информации;

• создание и использование компьютерных тестирующих, диагностирующих, контролирующих и оценивающих систем.

В своей дипломной работе я рассмотрел одну из сторон процесса информатизации общества и образования ­– создание и использование на практике одной из форм обучения с использованием средств новых информационных технологий (НИТ) – электронного учебника. В ней исследуются возможности средств новых информационных технологий, условия, необходимые для их успешного использования, рассматривается и анализируется прикладное программное обеспечение необходимое для создания и дальнейшего использования электронных учебников. Кроме этого, описываются все этапы создания подобных электронных приложений с учетом специфики конкретного учебного предмета (математики).

Работа состоит из трех глав: в первой кратко рассматриваются современные реалии информатизации общества, аспекты применения СНИТ в высшем образовании и классификация ППС; вторая глава посвящена этапам разработки и создания электронного учебника, также, в нее входит анализ наиболее популярных авторских систем традиционно используемых для разработки электронных приложений; в третьей главе описан математический аппарат легший в основу электронного учебника: теоретический материал с контрольными вопросами, примеры решений заданий и задания для самостоятельной работы.

 

Глава I : Информационные технологии в обществе и образовании

 

Информатизация общества: современные реалии

 

В современном цивилизованном обществе этапа информатизации все его члены, независимо от их общественного положения, используют информацию и знания в своей деятельности, решая непрерывно возникающие перед ними задачи. При этом постоянно увеличивающиеся запасы знаний, опыта, весь интеллектуальный потенциал общества, который сосредоточен в книгах, патентах, журналах, отчетах, идеях, активно, на современном техническом уровне участвует в повседневной производственной, научной, образовательной и других видах деятельности людей. Ценность информации и удельный вес информационных услуг в жизни современного общества резко возросли. Это дает основание говорить о том, что главную роль в процессе информатизации играет собственно информация, которая сама по себе не производит материальных ценностей. Под информацией (с общих позиций) будем понимать сведения о фактических данных и совокупность знаний о зависимостях между ними, то есть средство, с помощью которого общество может осознавать себя и функционировать как единое целое. Естественно предположить, что информация должна быть научно –достоверной, доступной в смысле возможности ее получения, понимания и усвоения; данные, из которых информация извлекается, должны быть существенными, соответствующими современному научному уровню.

Как было уже сказано, общество этапа информатизации характеризует процесс активного использования информации в качестве общественного продукта, в связи с чем происходит формирование высокоорганизованной информационной среды, оказывающей влияние на все стороны жизнедеятельности членов этого общества.

Информационная среда включает множество информационных объектов и связей между ними, средства и технологии сбора, накопления, передачи, обработки, продуцирования и распространения информации, собственно знания, а также организационные и юридические структуры, поддерживающие информационные процессы. Общество, создавая информационную среду, функционирует в ней, изменяет, совершенствует ее. Современные научные исследования убеждают в том, что совершенствование информационной среды общества инициирует формирование прогрессивных тенденций развития производительных сил, процессы интеллектуализации деятельности членов общества во всех его сферах, включая и сферу образования, изменение структуры общественных взаимоотношений и взаимосвязей.

Необходимо выделить ряд основных направлений формирования и становления средств, методов и технологий, которые открывают новые возможности прогрессивного общественного развития, находящего свое отражение в сфере образования.

– математизация и информатизация предметных областей: использование современных информационных технологий при реализации возможностей аппарата математики, в том числе математической статистики, позволяет автоматизировать процессы обработки информации, результатов научного эксперимента, интенсифицировать применение инструментария математики в социологических исследованиях. Математизация дает возможность повысить качество принимаемых решений на всех стадиях процесса принятия решения человеком или ЭВМ за счет применения современных методов многофакторного анализа, прогнозирования, моделирования и оценки вариантов, оптимального планирования. Это позволяет перейти к разработке научно обоснованных подходов к принятию оптимального решения в конкретной ситуации, использовать методы и средства информатики в процессе решения задач различных предметных областей.

– интеллектуализация деятельности:

реализация возможностей технических и программных средств современных информационных технологий позволяет: обеспечить управление информационными потоками; общаясь с пользователем на естественном языке, осуществлять распознавание образов и ситуаций, их классификацию; эффективно обучать логике доказательств; накапливать и использовать знания; организовывать разнообразные формы деятельности по самостоятельному извлечению и представлению знаний; осуществлять самостоятельное "микрооткрытие" изучаемой закономерности.

– интеграционные процессы:

интеграция современных информационных технологий с операциональными обеспечивает системный эффект, следствием которого становится "технологический прорыв", имеющий место в педагогике. Вместе с тем использование современных информационных технологий поддерживает общие интеграционные тенденции процесса познания окружающей информационной, экологической, социальной среды, способствует реализации преимуществ узкой специализации и возможностей индивидуализации процесса обучения, обеспечивая эффективность образовательного процесса.

Естественно предположить, что развитие, совершенствование информационной среды сферы образования зависит от обеспечения системы образования как в целом, так и каждого учебного заведения в отдельности специализированными подразделениями, приспособленными для организации деятельности со средствами новых информационных технологий.

 

Аспекты применения СНИТ в образовании

 

Интенсивное развитие процесса информатизации образования влечет за собой расширение сферы применения СНИТ. В настоящее время можно уже вполне определенно выделить успешно и активно развивающиеся направления использования современных информационных технологий в образовании:

– реализация возможностей программных средств учебного назначения (проблемно-ориентированных, объектно-ориентированных, предметно-ориентированных) в качестве средства обучения, объекта изучения, средства управления, средства коммуникации, средства обработки информации.

– интеграция возможностей сенсорики, средств для регистрации и измерения некоторых физических величин, устройств, обеспечивающих ввод и вывод аналоговых и дискретных сигналов для связи с комплектом оборудования, сопрягаемого с ЭВМ, и учебного, демонстрационного оборудования при создании аппаратно-программных комплексов.

Использование таких комплексов предоставляет обучаемому инструмент исследования, с помощью которого можно осуществлять регистрацию, сбор, накопление информации об изучаемом или исследуемом реально протекающем процессе; создавать и исследовать модели изучаемых процессов; визуализировать закономерности процессов, в том числе и реально протекающих; автоматизировать процессы обработки результатов эксперимента; управлять объектами реальной действительности. Применение этих комплексов, учебного, демонстрационного оборудования, функционирующего на базе СНИТ, позволяет организовывать экспериментально-исследовательскую деятельность – как индивидуальную (на каждом рабочем месте), так и групповую, коллективную с реальными объектами изучения, их моделями и отображениями. Это обеспечивает широкое внедрение исследовательского метода обучения, подводящего учащегося к самостоятельному "открытию" изучаемой закономерности, способствует актуализации процесса усвоения основ наук, развитию интеллектуального потенциала, творческих способностей.

– интеграция возможностей компьютера и различных средств передачи аудиовизуальной информации при разработке видеокомпьютерных систем и систем мультимедиа.

Эти системы представляют собой комплекс программно-аппаратных средств и оборудования, который позволяет объединять различные виды информации (текст, рисованная графика, слайды, музыка, реалистические изображения, движущиеся изображения, звук, видео) и реализовывать при этом интерактивный диалог пользователя с системой. Использование видеокомпьютерных систем и систем мультимедиа обеспечивает реализацию интенсивных форм и методов обучения, организацию самостоятельной учебной деятельности, способствует повышению мотивации обучения за счет возможности использования современных средств комплексного представления и манипулирования аудиовизуальной информацией, повышения уровня эмоционального восприятия информации.

– реализация возможностей систем искусственного интеллекта при разработке так называемых интеллектуальных обучающих систем (Intelligent Tutoring Systems) типа экспертных систем, баз данных, баз знаний, ориентированных на некоторую предметную область.

Использование возможностей систем искусственного интеллекта создает веские предпосылки для организации процесса самообучения; формирует умения самостоятельного представления и извлечения знаний; способствует интеллектуализации учебной деятельности; инициирует развитие аналитико-синтетических видов мышления, формирование элементов теоретического мышления. Все это является основой интенсификации процессов развития личности обучаемого.

– использование средств телекоммуникаций, реализующих информационный обмен на уровне общения через компьютерные сети (локальные или глобальные), обмен текстовой, графической информацией в виде запросов пользователя и получения им ответов из центрального информационного банка данных.

Телекоммуникационная связь позволяет в кратчайшие сроки тиражировать передовые педагогические технологии, способствует общему развитию обучаемого.

– новая технология неконтактного информационного взаимодействия, реализующая иллюзию непосредственного вхождения и присутствия в реальном времени в стереоскопически представленном "экранном мире" - система "Виртуальная реальность".

Использование этой системы позволяет обеспечить аудиовизуальный и тактильный контакт между пользователем и стереоскопически представленными объектами виртуальной реальности при наличии обратной связи и использовании средств управления.

Перспективами использования системы "Виртуальная реальность" в сфере образования являются: профессиональная подготовка будущих специалистов в областях, в которых необходимо стереоскопически представлять изучаемые или исследуемые объекты: стереометрии, черчению, инженерной графике, машинной графике, организация досуга, развивающих игр, развитие наглядно-образного, наглядно-действенного, интуитивного, творческого видов мышления.

Как показывает отечественный и зарубежный опыт применения СНИТ, реализация вышеизложенных возможностей позволяет обеспечить:

· предоставление обучаемому инструмента исследования, конструирования, формализации знаний о предметном мире и вместе с тем активного компонента предметного мира, инструмента измерения, отображения и воздействия на предметный мир;

· расширение и углубление изучаемой предметной области за счет возможности моделирования, имитации изучаемых процессов и явлений; организации экспериментально-исследовательской деятельности; экономии учебного времени при автоматизации рутинных операций вычислительного, поискового характера;

· расширение сферы самостоятельной деятельности обучаемых за счет возможности организации разнообразных видов учебной деятельности (экспериментально-исследовательская, учебно-игровая, информационно-учебная деятельность, а также деятельность по обработке информации, в частности и аудиовизуальной), в том числе индивидуальной, на каждом рабочем месте, групповой, коллективной;

· индивидуализацию и дифференциацию процесса обучения за счет реализации возможностей интерактивного диалога, самостоятельного выбора режима учебной деятельности и организационных форм обучения;

· вооружение обучаемого стратегией усвоения учебного материала или решения задач определенного класса за счет реализации возможностей систем искусственного интеллекта;

· формирование информационной культуры, компоненты культуры индивида, члена информационного общества, за счет осуществления информационно-учебной деятельности, работы с объектно-ориентированными программными средствами и системами;

· повышение мотивации обучения за счет компьютерной визуализации изучаемых объектов, явлений, управления изучаемыми объектами, ситуацией, возможности самостоятельного выбора форм и методов обучения, вкрапления игровых ситуаций.

Процесс информатизации образования и связанное с этим использование возможностей СНИТ в процессе обучения приводит не только к изменению организационных форм и методов обучения, но и к возникновению новых методов обучения.

Математизация и информатизация предметных областей, интеллектуализация учебной деятельности, общие интеграционные тенденции процесса познания окружающей информационной, экологической, социальной среды, поддерживаемые использованием СНИТ, приводят к расширению и углублению изучаемых предметных областей, интеграции изучаемых предметов или отдельных тем. Это обусловливает изменение критериев отбора содержания учебного материала. Они основываются на необходимости интенсификации процесса интеллектуального и саморазвития личности обучаемого, формирования умений формализовать знания о предметном мире, извлекать знания, пользуясь различными современными методами обработки информации.

Таким образом, в связи с развитием процесса информатизации и образования изменяется объем и содержание учебного материала, происходит переструктурирование программ учебных предметов (курсов), интеграция некоторых тем или самих учебных предметов, что приводит к изменению структуры и содержания учебных предметов (курсов) и, следовательно, структуры и содержания образования.

Параллельно этим процессам происходит внедрение инновационных подходов к проблеме уровня знаний учащихся, основанных на разработке и использовании комплекса компьютерных тестирующих, диагностирующих методик контроля и оценки уровня усвоения.

Изменение содержания и структуры образования, представлений об организационных формах, методах обучения и контроля за его результатами приводит к изменению частных методик преподавания.

Реализация возможностей СНИТ в процессе обучения и связанное с этим расширение спектра видов учебной деятельности приводят к качественному изменению дидактических требований к средствам обучения, учебной книге. Это наглядно демонстрируется на примере педагогических программных средств (ППС) учебного назначения.

 

 

Дата: 2019-07-24, просмотров: 225.