Магнитное поле бесконечного прямого проводника с током
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

 

Пусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой Á. А сила тока это что такое? ,  - заряд, который пересекает поверхность S за время . Система обладает осевой симметрией. Если мы введём цилиндрические координаты r, j , z, то цилиндрическая симметрия означает, что  и, кроме того, , при смещении вдоль оси OZ, мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия  и . Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

 

Вот ортогональная плоскость,

 

вот окружность радиуса r,

 

я возьму тут касательный вектор, вектор, направленный вдоль j, касательный вектор к окружности.

 

Тогда, ,  где .

В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как  при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии  (R – радиус кривизны проводника), будет справедлива эта формула.

 

Магнитное поле, создаваемое произвольным проводником с током.

Закон Био-Савара.

 

Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент , положение этого элемента определяется радиус-вектором , а точка наблюдения задаётся радиус-вектором . Утверждается, что этот элемент проводника создаст в этой точке индукцию  по такому рецепту: . Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла . Тогда поле, создаваемое всем проводником: , или, мы можем написать теперь интеграл: . Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.

 

Пример. Магнитное поле кругового витка с током.

     
 

Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы Á. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:

Общая картина силовых линий тоже просматривается (рис.7.10).

 

По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0).

Направление вектора  определяется векторным произведением . Вектор  имеет две составляющие:  и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: ,  = , а . , и, наконец1), .

 

Мы добыли такой результат:

 

 

А теперь, в качестве проверки, поле в центре витка равна: .

 


Поле длинного соленоида.

 

Соленоидом называется катушка, на которую намотан проводник.

Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать =0, а внутри соленоида =const. Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13), а теперь пишем: 1) .

 - это полный заряд. Эту поверхность протыкают витки

 

(полный заряд)= (число витков, протыкающих эту поверхность).

 

Мы получим такое равенство из нашего закона: , или

 

.

 

8

 

 

Дата: 2019-07-24, просмотров: 150.