Определение гидравлического сопротивления теплообменника
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

А) в трубном пространстве:

Скорость среды в трубах теплообменника:

ωтр = 4∙G1∙z/(3,14∙d2∙n∙ρ 1) (4.13)

ωтр = 4∙ 5∙2/(3,14∙(0,021)2∙100∙1023) =0,28 м/с.

Для определения коэффициента трения λ нужен Re среды. Re= 12800.

Коэффициент трения λ рассчитываем по формуле:

 

Т.к. диаметр кожуха выбранного теплообменника равен Dk= 600 мм, а число ходов z= 2, то диаметр условного прохода его штуцеров равен dш= 150 мм (см.табл.2.6.[2]).

Скорость потока в штуцерах:

ω ш=4∙Gтр/(3,14∙ ρтр∙d трш2)= 4∙ 5/(3,14∙ 1023∙(0,15)2)= 0,0,277 м/с. (4.14)

Расчетная формула для определения гидравлического сопротивления в трубном пространстве имеет вид (формула(2.35) [2]):

ΔРтр= , (4.15)

где L-длина труб теплообменника, м.

ΔРтр= 1392 Па.

Б) В межтрубном пространстве:

Число рядов труб, омываемых потоком в межтрубном пространстве:

m≈(n/3)0.5=(100/3)0.5≈6 (4.16)

Число сегментных перегородок х=14 (см. табл. 2.7[2]).

Диаметр штуцеров к кожуху dмтр.ш=0,2 м, скорость потока в штуцерах:

(4.17)

Скорость теплоносителя в межтрубном пространстве ωмтр определяется по формуле:

(4.18)

ΔРмтр= , (4.19)

ΔРмтр=21234 Па.

 

РАСЧЕТ ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ

Расчет барометрического конденсатора

Для создания вакуума в выпарных установках обычно применяют конденсаторы смешения с барометрической трубой. В качестве охлаждающего агента используют воду, которая подаётся в конденсатор чаще всего при температуре окружающей среды (около 20°С). Смесь охлаждающей воды и конденсата выливается из конденсатора по барометрической трубе. Для поддержания постоянства вакуума в системе из конденсатора с помощью вакуум-насоса откачивают неконденсирующиеся газы.

Необходимо рассчитать расход охлаждающейся воды, основные размеры (диаметр и высоту) барометрического конденсатора и барометрической трубы, производительность вакуум-насоса.

Расход охлаждающей воды

Расход охлаждающей воды gb определяют из теплового баланса конденсатора:

Gв=w2*(Iбк-cв*tк)/(cв*(tк-tн)), (5.1)

где Iбк - энтальпия паров в барометрическом конденсаторе, Дж/кг; tн - начальная температура охлаждающей воды, °С;tк - конечная температура смеси воды и конденсата, °С.

Разность температур между паром и жидкостью на выходе из конденсатора должна быть 3-5 град. Поэтому конечную температуру воды tк на выходе из конденсатора примем на 3 град ниже температуры конденсации паров;

При tбк=47,42°С

 

tк=tбк-3,0=47,42-3=44,42 °С

Тогда при tн=20 °С

Gв=2,091 (2585∙10З-4,19∙10З∙44,42)/(4,19∙10З∙(44,42-20))=49,09 кг/с

Диаметр конденсатора

Диаметр барометрического конденсатора dбк:

dбк=(4∙w2 /(ρ∙π∙v))0,5, (5.2)

где ρ - плотность паров, кг/куб.м; v - скорость паров, м/с.

При остаточном давлении в конденсаторе порядка 104 Па скорость паров v=15-25 м/с. Тогда при v=20 м/с:

dбк=(4∙2,091/(3,14∙20∙0,067))0,5=1,41м.

По нормалям НИИХИММАШа [12] подбираем конденсатор диаметром, равным расчётному или ближайшему большему. Определяем его основные размеры. Выбираем барометрический конденсатор диаметром dбк=1600 мм.

Дата: 2019-07-24, просмотров: 218.