Ч100. Альвеолярная гиповентиляция. Причины возникновения, механизмы развития. Изменения газового состава и КОС крови.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1. Альвеолярная гиповентиляция – это типовая форма нарушения внешнего дыхания, при которой минутный объем вентиляции меньше газо-обменной потребности организма в единицу времени. Последствия гиповентиляции характеризуются увеличением содержания СО2 в альвеолярном воздухе и, соответственно, в артериальной крови (гиперкапния) снижением содержание кислорода в альвеолярном воздухе и артериальной крови (гипоксемия). Обязательным признаком альвеолярной гиповентиляции является респираторный ацидоз. Устранение гипоксемии возможно при дыхании чистым кислородом, однако это не сопровождается адекватной элиминацией СО2, и ацидоз сохраняется. Гиповентиляция при легочной патологии является проявлением истощения резерва аппарата внешнего дыхания вследствие снижения сократительной способности дыхательной мускулатуры и вторичного угнетения дыхательного центра.

Причины альвеолярной гиповентиляции:

· нарушения проходимости дыхательных путей,

· уменьшение дыхательной поверхности лёгких,

· нарушение расправления и спадения альвеол,

· патологические изменения грудной клетки,

· механические препятствия экскурсиям грудной клетки,

· расстройства деятельности дыхательной мускулатуры,

· расстройства центральной регуляции дыхания.

В основе развития альвеолярной гиповентиляции лежат два основных механизма:

1. Нарушения биомеханики дыхания;

2. Расстройство механизмов регуляции внешнего дыхания.

I. Биомеханика дыхания изучает соотношение давлений в плевральной полости, альвеолах и воздухоносных путях объемам легких, а также скорости движения воздуха, различные типы сопротивления (эластическое, аэродинамическое, инерционное) и работу дыхательной мускулатуры. Нарушения биомеханики дыхания могут быть связаны с поражением дыхательного аппарата на любом уровне и проявляются:

1. Обструктивными;

2. Рестриктивными нарушениями.

II. Нарушение регуляции дыхания. Функция аппарата внешнего дыхания зависит от состояния системы регуляции вентиляции, транспортной функции крови, биохимических процессов и газообмена в тканях.

Регуляция дыхания. Центральный регулирующий дыхание механизм у человека представляет собой функциональную совокупность нервных структур, расположенных на разных уровнях ЦНС: в спинном и продолговатом мозге, варолиевом мосте, буграх четверохолмия, гипоталамусе, коре больших полушарий. В то же время принято считать, что сам дыхательный центр находится в продолговатом мозге. Современные представления о механизмах регуляции вентиляции основываются на трехкомпонентной теории дыхательного цикла (1. инспираторная; 2. постинспираторная; 3. экспираторная активности) и соответствующей каждому из трех компонентов нейронному пулу: Модель механизма регуляции дыхания включает в себя влияние с центральных и периферических хеморецепторов, механорецепторов трахеобронхиального дерева (рефлекс Геринга-Брейера), влияния из вышележащих структур центральной нервной системы.

Гиповентиляционные расстройства дыхания возникают при расстройствах регуляции СВД. Они сопровождаются грубыми нарушениями ритмогенеза, формированием патологических типов дыхания, развитием апноэ. Изменение газового состава артериальной крови при альвеолярной гиповентиляции характеризуется увеличением напряжения Расо2 – гиперкапнией и снижением напряжения Рао2 – гипоксемией.

Модель механизма регуляции дыхания включает в себя влияние с центральных и периферических хеморецепторов, механорецепторов трахеобронхиального дерева (рефлекс Геринга-Брейера), влияния из вышележащих структур центральной нервной системы.

Активность дыхательного центра определяет адекватный по объему и ритму процесс вентиляции. Дыхательный ритмогенез обеспечивается залповыми разрядами нейронов структур дыхательного центра. Ритмическая смена вдоха выдохом и выдоха вдохом (автоматия дыхательного центра) определяется пейсмекерными свойствами бульбарных респираторных нейронов и непрерывным потоком афферентной импульсации с рецепторов дыхательной и сердечно-сосудистой систем: аортальных (периферических) и «центральных» (бульбарных) хеморецепторов, механорецепторов трахеобронхиального дерева, локализованных в дыхательных путях и легких, проприорецепторов дыхательных мышц, рефлексогенных зон сердечно-сосудистой системы, опорно-двигательного аппарата.

Активация инспираторных нейронов происходит под влиянием хеморецепторной импульсации и прекращается под влиянием тормозных влияний, исходящих от других групп дыхательных нейронов и сигналов, поступающих от рецепторов растяжения легких. Вдох заканчивается, и наступает пассивный или активный выдох.

Изменения газового состава крови (раО2, раСО2, pH) влияют на активность дыхательного центра через возбуждение хеморецепторов. Хеморецепторы каротидного тела реагируют на снижение рН, раСО2 и раО2. – это единственный механизм, обеспечивающий увеличение вентиляции при гипоксемии. Афферентная импульсация включается в этой зоне при снижении раО2 с 95 до 70 мм рт.ст. и значимо возрастает по мере дальнейшего падения раО2 в диапазоне от 70 до 30 мм рт.ст. Влияния отклонений раО2 по мощности уступают влиянию отклонений раСО2, так как в этом случае присоединяется активация центральной хеморецепции. При некоторых заболеваниях, сопровождающихся повреждением синокаротидной зоны (опухоли, коллагенозы, травмы), нарушается механизм стимуляции дыхательного центра при снижении раО2.

Хеморецепторы каротидных и аортальных телец (периферические рецепторы) и вентролатеральной зоны продолговатого мозга (центральные рецепторы) опосредованно реагируют на изменение раСО2: повышение раСО2 сопровождается увеличением концентрации водородных ионов [Н+] в крови и цереброспинальной жидкости. Функциональной особенностью этих рецепторов является медленная реакция только на изменение концентрации водородных ионов. При снижении рН цереброспинальной жидкости происходит активация центральных хеморецепторов и рефлекторное увеличение вентиляции легких. Общепринято, что центральные хеморецепторы регулируют глубину вдоха (дыхательный объем), а периферические – частоту дыхания.

Хеморецепторы обеспечивают поддержание дыхательного ритмогенеза. Частота и глубина дыхания зависят от интенсивности хеморецепторных сигналов в дыхательный центр и эфферентной импульсации через мотонейроны шейного и грудного отделов спинного мозга к дыхательной мускулатуре.

Регуляция дыхания осуществляется системой, основанной на регуляции по «отклонению» и по «возмущению» и способной к самообучению.

Регуляция по «отклонению» включается при изменении газового состава артериальной крови (рН, раО2 и раСО2). При отклонении регулируемых параметров изменяется активность дыхательного центра, из которого по эфферентным волокнам усиливается поток импульсов к дыхательной мускулатуре и происходит восстановление нормального уровня газов крови.

Регуляция по «возмущению» является упреждающим механизмом при физических нагрузках и увеличении сопротивления дыханию. Она связана не с изменениями газового состава крови, а с усилением нервной импульсации в дыхательный центр. При физической нагрузке гиперпноэ возникает под влиянием сигналов от рецепторов двигательного аппарата, выполняющего мышечную работу, и в результате распространения на дыхательный центр мощного возбуждения от моторных зон больших полушарий головного мозга, обеспечивающих двигательную активность. В увеличении минутной вентиляции легких изменения хеморецепторной импульсации большого значения не имеют, так как существенные сдвиги раО2 и раСО2 отсутствуют.

Максимально возможные объемы вентиляции легких наблюдаются при выполнении мышечной работы значительной мощности. Минутная вентиляция может увеличиваться до 80-100, а у спортсменов – до 150 л/мин и более. Такое увеличение минутной вентиляции прямо пропорционально мощности выполняемой работы и степени интенсификации метаболизма, определяемых количеством потребляемого кислорода и выделяемого углекислого газа.

При нарушениях биомеханики дыхания (например, дыхание через узкую трубку, начинающийся бронхоспазм и т.п.) сразу усиливается центральная инспираторная активность и работа дыхательных мышц. При этом ДО увеличивается, частота дыхания снижается, минутная вентиляция либо остается прежней, либо увеличивается. Перечисленные изменения происходят сразу после включения дополнительного сопротивления и не связаны с отклонениями в газовом составе крови. Следовательно, при нарастании неэластического (резистивного) сопротивления усиление работы дыхательных мышц вызвано не гиперкапнией, а возбуждением проприорецепторов этих мышц: при увеличении сопротивления сокращению межреберных мышц и мышц стенок живота усиливается афферентация от рецепторов растяжения. Нарастает частота эфферентной импульсации и возникает ответная реакция – резкое усиление сокращения мышц. Таким образом, благодаря рефлексам на растяжение дыхательных мышц усиливается их сокращение при повышении сопротивления дыханию.

Снижение скорости вдоха при повышении сопротивления способствует ослаблению импульсации от рецепторов растяжения легких, дыхание становится глубоким и редким, увеличивается ДО. В условиях повышенного неэластического сопротивления редкое глубокое дыхание является энергетически наиболее выгодным.

При повышении эластического сопротивления минутная вентиляция также не снижается, но дыхание становится частым и поверхностным. Это требует меньшего усиления работы дыхательных мышц в подобных условиях и энергетически выгодно.

Таким образом, регуляция дыхания при повышенном неэластическом или эластическом сопротивлении обеспечивает поддержание относительного постоянства газового состава крови путем подбора оптимальных параметров дыхательного объема и частоты дыхания.

В условиях нормального газового состава крови общим является включение регуляции по «возмущению». Если афферентная импульсация в высшие нервные центры не обеспечивает адекватного увеличения объема легочной вентиляции, изменяется газовый состав артериальной крови и включается регуляция по «отклонению».

Существенное значение в регуляции дыхания играют опиатные рецепторы мостомедуллярной зоны и эндогенные опиоидные пептиды типа эндорфинов. Их нейромодуляторный эффект проявляется главным образом при стрессе, нарушениях вентиляции, приводящих к развитию острой дыхательной недостаточности. Использование антагониста опиоидных пептидов налоксона эффективно при купировании острой дыхательной недостаточности, вызванной передозировкой морфина, промедола, фентанила и других наркотических аналгетиков.

Аппарат регуляции дыхания обеспечивает режим вентиляции, или паттерн дыхания, который включает дыхательные объем, частоту, ритм, соотношение фаз вдоха и выдоха, паузы, объемные скорости вдоха-выдоха.

Нарушения центральных механизмов регуляции дыхания . Нарушения центральных механизмов регуляции дыхания возникают при травмах, воспалении, отеке, опухоли головного мозга, нарушении мозгового кровообращения, интоксикации. Угнетение дыхательного центра происходит также в условиях снижения афферентной импульсации.

Повреждения двигательных зон коры головного мозга клинически проявляются разнообразными затруднениями в согласовании дыхания с речеобразовательной функцией. Бифронтальные процессы в лобных долях, реже атеросклероз мозговых сосудов вызывают дыхательную апраксию. Такие больные не могут сделать по команде глубокий вдох или задержать дыхание, иногда это сочетается с невозможностью произвольного акта глотания, затруднениями в согласовании дыхания с речеобразовательной функцией.

Повреждение лимбической системы, миндалевидного ядра вызывают апноэ. У больных во время эпилептических припадков возникают периоды апноэ, чередующиеся с редким поверхностным дыханием.

Усиление импульсации от клеток коры и соответствующая активация дыхательного центра могут быть вызваны генерализованным возбуждением ЦНС (неврозы, приступы истерии). При этом, как правило, имеет место альвеолярная гиповентиляция, характеризующаяся изменениями в дыхательном цикле (инспираторно-экспираторное соотношение).

Барбитураты, наркотические аналгетики избирательно ингибируют афферентную импульсацию. Так, фентанил блокирует ноцицептивную афферентацию, но не изменяет вагусное влияние на дыхательный центр, которое тормозится барбитуратами.

Снижение тонуса ретикулярной формации ствола мозга и повышение порога возбудимости центральных хеморецепторов вызывает развитие дыхательной недостаточности у пациентов с синдромом Пиквика. Для этого процесса характерны гиповентиляция, периоды апноэ на фоне патологической сонливости, вторичная полицитемия, гипертрофия правого желудочка, сердечная недостаточность по правожелудочковому типу, прогрессирующее ожирение. Нарушения центральной регуляции проявляются ремиттирующими и интермиттирующими формами диспноэ, как правило, гипо-вентиляционного характера.

К ремиттирующим формам диспноэ относятся:

· тахипноэ – повышение частоты дыхания, сопровождающееся уменьшением дыхательного объема; альвеолярная вентиляция, как правило, не изменяется;

· полипноэ (гипервентиляция) – увеличение частоты и глубины дыхания; нарастание минутной и альвеолярной вентиляции направлено на повышение парциального давления и напряжения кислорода в альвеолярном воздухе и артериальной крови.

Тахипноэ и полипноэ свидетельствуют о возбуждении дыхательного центра в результате гипоксемии, гиперкапнии, эмоционального перевозбуждения, локальных патологических процессов в области дыхательного центра.

· брадипноэ – возникает при пониженной возбудимости дыхательного центра в связи с передозировкой наркотических и других фармакологических препаратов, при пищевых отравлениях.

Замедление частоты дыхания без соответствующего увеличения минутной вентиляции называется олигопноэ (гиповентиляция);

 

 

Дата: 2019-07-24, просмотров: 215.