Локальная изомерия (изомерия положения)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Возникает из-за возможности присоединения мономеров к растущей цепи полимера в процессе синтеза по различным вариантам:

 

1 – соединение по типу голова-хвост (г-х)

2 – соединение по типу голова-голова (г-г) или хвост-хвост (х-х)

 Наиболее распространенная конфигурация – голова-хвост, вследствие селективности в реакции присоединения мономера, например, из-за возможных стерических затруднений в случае близкого расположения боковых групп.

Изомерия, возникающая в результате различного раскрытия кратной связи:

Характерна для группы полимеров, имеющих две сопряженные двойные связи.

 Пример:

 

Цис-транс изомерия

Характерна для группы полимеров, имеющих в цепи двойные связи.

 

 

Цис-изомер

                

 

Транс-изомер

 

Локальная и цис-транс изомерии являются химическими видами изомерии.

Оптическая изомерия (стереоизомерия)

Характерна для полимеров, имеющих (псевдо)асимметрические атомы углерода.

Возможны различные варианты расположения заместителей относительно проекции вытянутой цепи полимера:

 Изотактический полимер:

          Х     Х     Х    Х    Х   Х

 

 

 


 Синдиотактический полимер:

         Х             Х            Х         

 

 

 


                     Х            Х           Х 

     

Атактический полимер:

        Х    Х                      Х

 

 

 


                              Х  Х           Х




Конформация макромолекул

 

Конформация – это форма, которую приобретают макромолекулы данного конфигурационного состава под действием теплового движения или физических полей.

Виды конформации:

· Конформация транс-зигзага

Представляет собой вытянутую цепь:

 

 

Возможно вращение вокруг связей по образующим конуса с углом при вершине 109˚28΄; движение ограничено, т. к. повернуть целый хвост за счет теплового движения трудно. При этом происходят частичные переходы транс-конформаций в свернутые (гош-конформации), а вытянутая цепь скручивается и переходит в конформацию “статистического клубка”.

 

· Конформация "клубок"

Представляет собой хаотично свернутую цепь:

 

 

 


 Клубок постоянно меняет свою форму за счет теплового движения.

Эта конформация может реализовываться и в растворе и в твердом теле.

Содержание полимера в клубке мало (около 5%), т.е. он является рыхлым (в промежутках находится растворитель или фрагменты других макромолекул)

Клубки имеют размер около 300-500 А˚.

 

· Конформация "глобула"

Представляет собой плотно заполненную атомами частицу, образующими в ней макромолекулу. Содержание полимера значительно выше, чем в клубке:

 


 

 

Полимерные образования в "хорошем" растворителе (т.е. в котором взаимодействие между частицами растворителя и полимером больше, чем между частицами растворителя) находятся в виде набухших клубков, в "плохом" – степень набухания клубков уменьшается.

 

· Конформация "спираль"

 

 

 


Представляет собой вытянутую спираль,

Характерна для биополимеров и для многих полимеров в кристаллическом состоянии.

Вопросы для самостоятельной проработки:

 

1. Какими основными параметрами характеризуются макромолекулы полимеров?

2. Назовите причины полидисперсности полимеров.

3. Какие существуют способы усреднения молекулярных масс макромолекул полимеров?

4. Чем отличается дифференциальное молекулярно-массовое распределение от интегрального распределения?

5. Перечислите виды конфигурационной изомерии макромолекул.

6. Какие виды конформации макромолекул полимеров Вы знаете?

 

Задачи для самостоятельного решения

1. Основные понятия и определения химии и физики полимеров

1.3. Понятие о конфигурации. Виды конфигурационной изомерии макромолекул

Вопросы 3501 – 3505, 3516 – 3520, 3406 – 3411, 3421 – 3423, 3312 – 3315, 3324 – 3326

1.4. Молекулярно-массовые характеристики полимеров

Вопросы 4501 – 4503, 4518 – 4521, 4404 – 4405, 4411 – 4413, 4416, 4422 – 4423, 4306 – 4310, 4314 – 4315, 4317

1.5. Дифференциальные и интегральные функции ММР

Вопросы 5501 – 5506, 5407 – 5414, 5315 - 5316

Раздел №4. Элементы, способные к образованию полимеров

 

Молекула полимера состоит из ряда связанных в цепь атомов:

                                

Рассмотрим, какие элементы Периодической системы Д. И. Менделеева (ПС) способны к образованию полимерных цепей.

 




Кислород, сера, селен

Атомы кислорода не способны к образованию длинных линейных цепочек; они способны образовывать лишь перекиси в виде 2-4 атомов кислорода,

Rn – O – O – Rm, соединенных в единую цепь, но и эти соединения являются малоустойчивыми.

Однако, единичные атомы кислорода могут встраиваться в цепи, образованные атомами других элементов (C, P, S, Si) (см. ниже).

Атомы серы способны соединяться между собой в протяженные линейные цепи, особенно при повышенных температурах, но эти цепи при охлаждении разрушаются.

Этот эффект давно известен как обратимый переход ромбической серы в пластическую серу.

 

ромбическая сера                               пластическая сера

 

При понижении температуры пластическая сера превращается в кристаллическую (ромбическую) серу.

Полимеры, содержащие в главной цепи только атомы серы, не устойчивы и не имеют практического значения. Серосодержащие фрагменты с 1, 2 или несколькими атомами серы устойчивы и входят в состав ряда полимеров.

Аналогичными свойствами облают Se и Te.

 

Азот, бор, алюминий

 

Эти элементы не образуют длинных линейных цепочек и не способны к образованию собственных полимеров.

Азот способен к образованию азосоединений с участием лишь двух атомов азота −N=N−.

Азот, бор, алюминий могут быть элементами макромолекулярных цепочек в других составных частях полимерной структуры, либо входить как гетероатомы в основную цепь.

 

Углерод

 

Обладает высокой склонностью к образованию прочных ковалентных связей, как между собственными атомами, так и с другими атомами.

     - структура алмаза

 

Это жесткая, разветвленная, 3-х мерная структура, полностью лишенная свойств, присущих линейным макромолекулам.

 

 - двухмерная углерод-углеродная структура графена, графита и сажи

 

Возможно получение и линейной цепи из атомов углерода:

      - структура карбина

или

   

При нагревании он превращается в графит.

Гораздо большие возможности по построению линейных макромолекул из атомов углерода открываются, когда 1 или 2 валентности углерода насыщаются другими атомами или группами.

Примеры:

- полиэтилен

- полипропилен

- политетрафторэтилен

 

Также в составе основной цепи могут находиться различные группировки, содержащие гетероатомы:

           - карбонильная группировка

  - сложно-эфирная группировка

- уретановая группировка

 - карбамидная ( мочевинная) группировка

 - простая эфирная или ацетальная группировка

 

В составе цепи могут находиться и атомы металлов:

Кремний

Атомы кремния способны образовывать полимерные цепи:

Но они химически не очень устойчивы и при окислении кремний связывается с кислородом, образуя очень прочные связи кремний-кислород.

 В природе кремний встречается в виде кварца:

Это жесткая трехмерная структура, не проявляющая «полимерных» свойств линейных макромолекул. Линейные макромолекулы получают, заместив две валентности у каждого атома кремния на органические радикалы (CH3-, C2H5- и т. д.). При этом появляются кремний-органические полимеры.

Можно синтезировать кремнийсодержащие полимеры:

- полисилоксаны

В цепь могут встраиваться атомы Al, B, Ti, Zn и некоторые другие.

Фосфор

Атомы фосфора могут образовывать полимеры, но в состав основной цепи должны входить и другие атомы (чаще всего кислород):

- полифосфаты

- полифосфорная кислота

Остатки ортофосфорной кислоты входят в природные полимеры (нуклеиновые кислоты, ДНК и РНК):

Таким образом, двух или поливалентные атомы (C, O, P, N, S, Si, Al, B и некоторые другие) могут находиться в виде элементов основной цепи макромолекул или находиться в боковых фрагментах; одновалентные атомы (H, F, Cl, J, Br и некоторые другие) могут выстраиваться только в качестве заместителей.

Химия полимеров построена на базе этих элементов.

 

Виды полимеров

Полимеры получают либо синтетически, либо извлекают из живых организмов (биополимеры), или же обработкой уже выделенных природных полимеров.

Далее будут рассмотрены синтетические способы получения полимеров.

Часть синтетически созданных полимеров существует в природе. Полимеры получаются из мономеров – низкомолекулярных веществ или в результате превращений готовых полимеров (синтетических или природных) – полимераналогичные превращения.

Примеры:

 

 - 1,4-цис-полибутадиена в природе не существует, получают синтетически из бутадиена.

 

 - 1,4-цис-полиизопрен существует в природе (натуральный каучук), но в природе синтезируется из глюкозы и других веществ (но не из изопрена, как в промышленности)

- этот полиэфир можно получить конденсацией поли-β-гидроксибутирата, в то же время он синтезируется и рядом бактерий.

Синтезы биополимеров в данном курсе рассматриваться не будут.

Многие природные полимеры очень сложно получить синтетически. Они получаются в живых организмах в результате протекания сложных биохимических реакций.

Важнейшие природные полимеры:

· Целлюлоза (является строительным материалом клеток всех растений)

Молекула построена из соединенных между собой глюкозидными связями остатков глюкозы, образуется при фотосинтезе в растениях.

 

· Молекулы белков построены из соединенных между собой пептидными связями остатков 20 различных α-аминокислот. Порядок расположения аминокислотных звеньев определяется генетическим кодом.

Например:

· Белки

                                     фенилаланин        триптофан

 

· Нуклеиновые кислоты

Молекулы построены из соединенных фосфорэфирными связями остатков сахаров (рибозы или дезоксирибозы) с химически присоединенными азотистыми основаниями. Порядок чередования оснований задает генетический код.

 

Дата: 2019-04-23, просмотров: 276.