Название | Энергия частицы |
Тепловые | <0,1 эВ |
Медленные | 0,1-500,0 эВ |
Промежуточные | 0,5-100,0 кэВ |
Быстрые | 0,1-10,0 МэВ |
Очень больших энергий | 10-1000 МэВ |
Сверхбыстрые (релятивистские) | >1000 МэВ |
Большинство нейтронов, образующихся при взрывах атомных боеприпасов, относится к быстрым нейтронам, а при взрывах водородных боеприпасов — к нейтронам очень больших энергий.
Так как нейтроны не имеют заряда, они не оказывают непосредственного влияния на электронную оболочку атомов, взаимодействуя только с ядрами. Сталкиваясь с ядрами, нейтроны либо отталкиваются от них (рассеяние), либо поглощаются ими (участие в ядерныхперестройках). Ниже раскрывается содержание процессов взаимодействия нейтронов атомами вещества.
Упругое рассеяние. При столкновении с ядрами углерода, азота, кислорода, фосфор, нейтроны теряют 10—15% , а при столкновении с ядрами водорода — до 2/3 своей энергии Потерянная нейтронами энергия передается «ядрам отдачи» — положительно заряженные частицам, имеющим высокую ионизирующую способность. Упругое рассеяние — основной путь потери энергии нейтронами, возникающими при атомных и водородных взрывах.
Неупругое рассеяние. В этом случае часть энергии расходуется нейтронами на возбуждение (разновидность колебательного движения) ядер-мишеней. В исходное состояние ядр< возвращаются испуская фотоны у-излучения.
Ядерные перестройки. При поглощении ядрами нейтронов происходит выброс протонов а-частиц, у-квантов, возникают искусственные радиоактивные изотопы (это явление называете* наведенной активностью).
Образующиеся при взаимодействии нейтронов с веществом ускоренные заряженные частицы — ядра отдачи — вносят основной вклад в ионизацию и возбуждение атомов вещества. Поэтому нейтроны, так же как рентгеновы и у-лучи, называют косвенно ионизирующим излучением.
Проникающая способность нейтронов несколько меньше, чем у у-излучения, но существенно больше, чем у ускоренных заряженных частиц. При ядерных и водородных взрывах нейтронный поток распространяется на сотни метров, легко проникая сквозь стальную броню и железобетон. Энергия нейтронов наиболее эффективно передается ядрам легких атомов. Поэтому вещества, богатые атомами водорода, бериллия, углерода, находят применение в экранировании от нейтронного излучения. Тяжелые металлы, плохо задерживающие нейтроны, могут применяться для ослабления вторичного у-излучения, возникающего в легких материалах в результате неупругого рассеяния нейтронов и ядерных перестроек.
Ускоренные заряженные частицы — это перемещающиеся в пространстве источники электрического поля (поток электронов — Р-частиц, протонов, ядер атома гелия — а-частиц). Естественными источниками ускоренных заряженных частиц являются некоторые из природных радиоизотопов. К искусственным источникам относятся искусственные радиоизотопы и ускорители заряженных частиц.
При прохождении через вещество заряженные частицы могут взаимодействовать с его атомами. Ниже раскрываются формы этого взаимодействия.
Упругое рассеяние — изменение траектории заряженной частицы в результате отталкивания от атомных ядер без потери энергии. Чем меньше масса частицы, тем больше ее отклонение от прямого направления. Поэтому траектории Р-частиц в веществе изломаны, а протонов и а-частиц — практически прямые.
Неупругое торможение. Электрон при прохождении вблизи атомного ядра теряет скорость и энергию. При этом может испускаться фотон тормозного излучения, летящий в том же направлении, что и электрон.
Ионизация и' возбуждение атомов в результате взаимодействия частицы с их электронными оболочками — основной путь потери энергии ускоренных заряженных частиц в веществе. Под действием их электрического поля происходит возмущение электронных оболочек атомов с переходом последних в возбужденное или ионизированное состояние. Способность ускоренных заряженных частиц непосредственно взаимодействовать с электронными оболочками атомов позволила определить их как первично ионизирующие излучения.
Проникающая способность ускоренных заряженных частиц, как правило, невелика. Она прямо пропорциональна энергии, массе и квадрату скорости частицы. Напротив, связь проникающей способности с абсолютной величиной заряда частиц является отрицательной. Пробег р-частиц в воздухе составляет десятки сантиметров, а а-частиц — миллиметры. Одежда надежно защищает человека от воздействия этих излучений извне. Однако поступление их источников внутрь организма является опасным, поскольку пробег а- или р-частиц в тканях превышает размеры клеток, что создает условия для воздействия излучения на чувствительные к нему субклеточные структуры.
Первичные изменения атомов и молекул сводятся к ионизации или возбуждению и качественно не зависят от вида действующего на них ИИ. Однако при одном и том же количестве энергии, поглощенной единицею массы вещества, микро-пространственное распределение этой энергии в облученном объёме различно. Это различие определяетсялинейной передачей энергии (ЛПЭ) — количеством энергии, передаваемой частицей веществу в среднем на единицу длины пройденного в нем пути:
ЛПЭ = ДЕ/Дх, где Е — энергия частицы (эВ); х — путь частицы (мкм).
ЛПЭ зависит от вида ИИ и плотности вещества. Значения этого показателя, приводимые в справочных таблицах, обычно соответствуют величине ЛПЭ конкретного ИИ в воде. ЛПЭ электромагнитных ИИ и нейтронов определяется величиной ЛПЭ первичных ионизирующих факторов (электронов и ядер отдачи, соответственно).
Зная величину ЛПЭ, можно определить среднее число ионов, образующихся на единицу длины пути частицы ИИ. Для этого надо разделить величину ЛПЭ на величину энергии, необходимой для образования одной пары ионов (как отмечалось, эта величина составляет 34 эВ). Количество пар ионов, образующихся в среднем на 1 мкм пути частицы ИИ в веществе, называется линейной плотностью ионизации (ЛПИ).
В зависимости от величины ЛПЭ все ионизирующие излучения делят на редко- и плотноионизирующие (табл. 62).
Таблица 62
Дата: 2019-04-23, просмотров: 198.