а) Общие сведения
Электрические машины постоянного тока (двигатели и генераторы) находят широкое применение в различных областях техники. Основное достоинство двигателей постоянного тока заключается в возможности плавного регулирования частоты вращения и получения больших пусковых моментов. По этой причине двигатели постоянного тока широко используются в качестве тяговых двигателей на электрическом транспорте, а также для привода различного технологического оборудования.
Электрические машины постоянного тока малой мощности применяются в системах автоматического регулирования, где они используются не только для привода исполнительных механизмов, но и как датчики частоты вращения подвижных частей регулируемой системы. Генераторы постоянного тока находят применение в системах электропитания специального оборудования, например в радиотехнических установках, при зарядке аккумуляторов, для: питания электролитических ванн и т. д.
Общим недостатком электрических машин постоянного тока является их конструктивная сложность, связанная главным образом со щеточно-коллекторным аппаратом. Кроме того, в коллекторно-щеточном аппарате, осуществляющем постоянную перекоммутацию цепей электрической машины, возникает искрение. Это снижает надежность машин и ограничивает область их применения. Существенным недостатком применения двигателей постоянного тока является необходимость предварительного преобразования для них электрической энергии переменного тока в электрическую энергию постоянного тока.
Б) Устройство машины постоянного тока
Машина постоянного тока в основном состоит из неподвижной части, служащей для возбуждения главного магнитного поля, и вращающейся части, в которой индуктируется ЭДС. Токи от этой ЭДС, взаимодействуя с главным магнитным полем, создают тормозной момент в генераторном режиме и вращающий момент в двигательном.
Неподвижная часть состоит из станины (рис. 13.1), на которой укрепляются основные (главные) полюсы для возбуждения главного
магнитного потока и дополнительные для улучшения коммутации в машине.
Главный полюс состоит из сердечника полюса, набранного из листовой стали и укрепленного болтами на станине, и катушки обмотки возбуждения. Сердечник на свободном конце снабжается полюсным наконечником для создания требуемого распределения магнитной индукции вдоль окружности якоря.
Станина является ярмом машины, т. е. частью, замыкающей магнитную цепь главного потока Ф (рис. 13.2). Она изготовляется из литой стали, так как магнитный поток в ней относительно постоянен. Дополнительные полюсы устанавливаются на станине между основными. На сердечниках дополнительных полюсов располагаются обмотки, которые соединяются последовательно с якорем.
Якорем называют часть машины, в обмотке которой при вращении ее относительно главного магнитного поля индуктируется ЭДС. В машине постоянного тока якорь состоит из зубчатого сердечника, обмотки, уложенной в его пазах, и коллектора, насаженного на вал якоря. Сердечник якоря набирается из листов электротехнической стали (рис. 13.3, а) толщиной 0,5 мм, изолированных друг от друга лаком.
В пазы сердечника якоря уложена обмотка якоря (рис. 13.3, б) обычно состоящая из отдельных секций. Для отвода тока от коллектора служат щетки, установленные в щеткодержателях (рис. 13.4). Щетку 1 к коллектору прижимает пружина 2. Ток от щетки отводится специальным гибким кабелем. Щеткодержатели надеваются на щеточную траверсу (отверстие 3), от которой они электрически изолируются. Траверса крепится соосно с якорем так, что ее можно поворачивать, изменяя положение щеток по отношению к полюсам машины.
Характерной частью электрических машин постоянного тока является коллектор. Это полый цилиндр, собранный из изолированных друг от друга клинообразных медных пластин 1 (рис. 13.5). Пластины коллектора изолированы также от вала машины. Проводниками 2 они соединяются с витками обмотки, размещенной в пазах якоря.
Вращающаяся обмотка соединяется с внешней цепью скользящим контактом между щетками и коллектором.
Как и все электрические машины, машина постоянного тока обратима. Она работает в режиме генератора, если ее вращает первичный двигатель, главное магнитное поле возбуждено, а цепь якоря соединена через щетки с приемником. При таких условиях ЭДС, индуктируемая в обмотке якоря, создает в якоре и приемнике ток.
Взаимодействие тока якоря с главным магнитным полем создает на валу машины тормозной момент, который преодолевается первичным двигателем. Генератор преобразует механическую энергию в электрическую.
В двигательном режиме цепи якоря и возбуждения машины присоединены к источнику электроэнергии. Взаимодействие тока якоря с главным магнитным полем создает вращающий момент. Под действием последнего вращающийся якорь преодолевает момент нагрузки на валу машины. Двигатель преобразует электрическую энергию в механическую.
Таким образом, одна и та же машина может быть использована в качестве генератора или двигателя. Важнейшим классификационным признаком машин постоянного тока является способ возбуждения главного магнитного поля. Одним из них является использование постоянных магнитов на полюсах машины. Во многих современных машинах главное магнитное поле возбуждается с помощью электромагнитов. Для этого используется обмотка возбуждения с током возбуждения, размещенная на сердечниках полюсов машины. Все рабочие характеристики машин постоянного тока при работе как в режиме генератора, так и в режиме двигателя зависят от способа включения цепи возбуждения по отношению к цепи якоря. Соединение этих цепей может быть параллельным, последовательным, смешанным, и, наконец, цепи эти могут быть независимы одна от другой, в соответствии с чем принято различать параллельное, последовательное, смешанное и независимое возбуждение машин. Практически весьма ценно то обстоятельство, что мощность цепи возбуждения при любом способе включения обмотки возбуждения относительно мала — примерно 5% номинальной мощности у малых машин и менее 1 % — у машин большой мощности. Это делает возможным экономичное управление работой машины постоянного тока (напряжением генератора, угловой скоростью вращения двигателя).
В машинах с независимым возбуждением обмотка возбуждения подключается к независимому источнику электроэнергии (рис. 13.6), благодаря чему ток в ней не зависит от напряжения на выводах якоря машины. Сечение проводов обмотки возбуждения в этих машинах выбирается в зависимости от напряжения источника тока возбуждения. Характерным для этих машин является независимость главного магнитного потока от нагрузки машины.
У машин с параллельным возбуждением цепь обмотки возбуждения соединяется параллельно с цепью якоря (рис. 13.7, а). В этом случае ток возбуждения Iв во много раз меньше тока якоря (0,05—0,01), а напряжение U между выводами цепей якоря и возбуждения одно и то же. Следовательно, сопротивление
обмотки возбуждения (rв= U/ Iв) должно быть относительно велико. Обмотка возбуждения машины параллельного возбуждения имеет большое число витков wnа p из тонкого провода и благодаря этому обладает значительным сопротивлением. Характерно для машин параллельного возбуждения, работающих в системе большой мощности, постоянство главного магнитного потока и его небольшая зависимость от условий нагрузки машины.
У машин с последовательным возбуждением ток якоря Iя равен току обмотки возбуждения (рис. 13.7, б), поэтому она выполняется проводом большого сечения. Значение тока Iя в обмотке последовательного
возбуждения велико, благодаря чему для получения необходимой МДС (Iя wnoс) достаточно, чтобы эта обмотка имела малое число витков wnoс. Следовательно, сопротивление обмотки последовательного возбуждения rв относительно мало. Для этих машин характерны изменения в широких пределах главного магнитного потока при изменениях нагрузки машины вследствие изменений тока якоря, который является одновременно и током возбуждения.
В машинах со смешанным возбуждением на каждом полюсном сердечнике расположены две обмотки (рис. 13.8)
Одна из этих обмоток, подключаемая параллельно якорю, является основной. Создаваемая ею МДС (Iпар wпар) возбуждает главное магнитное поле.
Вторая обмотка wnoс лишь дополнительно воздействует на это магнитное поле. В зависимости от преобладания МДС, созданных последовательной или параллельной обмоткой возбуждения, машина по своим характеристикам может быть машиной последовательного возбуждения с небольшой параллельной обмоткой возбуждения или машиной параллельного возбуждения с небольшой последовательной обмоткой возбуждения. В большинстве машин смешанного возбуждения применяется согласное соединение, т. е. МДС двух обмоток складываются. Встречное соединение, при котором МДС обмоток имеют противоположное направление, применяется в немногих специальных случаях.
Дата: 2019-05-29, просмотров: 226.