В настоящее время иммунный ответ организма связывают главным образом с согласованной деятельностью трех видов белых клеток крови (агранулярных лейкоцитов): В- , Т-лимфоцитов и макрофагов. Первоначально они или их предшественники (т.н. стволовые клетки) образуются в красном костном мозге, затем наблюдается их миграция в лимфоидные органы. Эти органы делятся на первичные (где лимфоциты "обучаются") и вторичные (где они "работают"). Первичными органами являются тимус(вилочковая железа) и бурса (у птиц) или красный костный мозг (возможно, и аппендикс) у млекопитающих; отсюда и название этих лимфоцитов- Т- и В-клетки соответственно. Обучение направлено на приобретение способности отличать свое от чужого (умения распознавать антигены). Чтобы быть узнанными, клетки организма синтезируют специальные белки, называемые белками главного комплекса гистосовместимости (мы их будем обозначать по английской аббревиатуре белки МНС).
У каждого человека в силу генетической изменчивости эти белки разные, хотя можно выделить ряд похожих групп белков МНС у разных людей (по типу, как группы крови), которые обязательно учитывают при трансплантации органов.
К вторичным лимфоидным органам относят селезенку, лимфатические узлы, миндалины, аденоиды, аппендикс, периферические лимфатические фолликулы. Они, как и сами клетки иммунитета, разбросаны по всему телу человека,
чтобы "встретить" любой антиген во всеоружии. Во вторичных лимфоидных органах, собственно, и развивается иммунная реакция на антиген. Например, при различных воспалительных болезнях резко увеличиваются лимфоузлы около пораженного органа. Лимфоидные органы на первый взгляд представляются небольшой системой организма, но подсчитано, что в сумме их масса составляет более 2,5 кг (что больше массы, например, печени!).
Таблица 1. Виды иммунитета и пути их формирования
Активный | Пассивный | |
Искусственный | Формируется путем вакцинации. Человеку делается прививка ослабленными или убитыми вирусами или бактериями. В результате развивается первичный иммунный ответ организма, а при попадании нормального неослабленного возбудителя заболевания обеспечивается вторичный ответ, ведущий к легкому течению болезни и быстрому обезвреживанию антигена. Методами генной инженерии создаются безвредные вакцины, не имеющие в своем составе "поражающего" фактора (ДНК или РНК вирусов или бактерий), но содержащие их поверхностные белки, на которые развивается иммунный ответ | возникает после введения сывороток, которые содержат готовые антитела против конкретного антигена (например, против дифтерии, энцефалита, змеиного яда). Эти антитела получают от иммунизированных лошадей или методами генной инженерии. Поскольку некоторые болезни развиваются быстрее, чем иммунный ответ организма, человек может умереть; но если своевременно ввести готовые антитела, они помогают справиться с болезнью, за это время развивается собственный иммунный ответ. Разработка методов вакцинации и сывороток тесно связана с именем великого французского ученого Л.Пастера |
Естественный | Возникает как вторичный ответ организма после перенесения заболевания, первого контакта с каким-то антигеном и т.п. В крови такого человека накапливаются антитела (против данного антигена!), образуются также клетки иммунологической памяти. Если в организм вновь попадает этот антиген, иммунный ответ развивается быстрее и сильнее, и болезнь протекает в легкой форме | обеспечивается передачей от матери к плоду (через плаценту) или ребенку (в большей степени-через молозиво, в меньшей - через молоко) антител против самых опасных детских болезней- скарлатины, дифтерии, кори и т.п. |
Во время эмбриогенеза закладывается разнообразие В - лимфоцитов (по оценкам ученых, насчитывается около миллиарда различных вариантов В-клеток - равно как и Т-клеток), причем каждый В-лимфоцит направлен против строго определенного антигена. Разумеется, миллиарда генов в геноме человека быть не может, и гигантское разнообразие, обеспечивается минимумом генетического материала (назовем только некоторые из этих механизмов: соматическая рекомбинация, соматические мутации, ошибки сплайсинга). В-клетки после активации превращаются в плазматические клетки (или плазмоциты), которые живут недолго, но успевают произвести великое множество антител.
Антитела (или иммуноглобулины) устроены однотипно, хотя среди них выделяют 5 классов. Главная особенность антител-умение связывать строго определенный антиген: так, при кори в организме вырабатывается "противокоревой" иммуноглобулин, против гриппа- "противогриппозный" и т.п. Молекула иммуноглобулина имеет в своем составе две тяжелые и две легкие полипептидные цепочки, поэтому у нее два совершенно одинаковых центра связывания антигенов (говорят, что мономер иммуноглобулинов двухвалентен). В молекулах антител есть и участки, отвечающие за привлечение эффекторных (т.е. поражающих) систем иммунитета; поэтому главная функция антител- не разрушение антигенов, а весьма существенная помощь в их обезвреживании, без антител иммунный ответ развивается очень медленно.
Различают 3 главных вида Т-лимфоцитов: хелперы ("помощники"), супрессоры("подавители") и киллеры("убийцы").
Хелперы способны узнавать антиген и двумя способами активировать соответствующий В-лимфоцит (непосредственно при контакте или дистантно с помощью специальных веществ- лимфокинов). Наиболее известным лимфокином является интерферон, который используется в медицинских целях при лечении вирусных болезней (например, гриппа), но эффективен только в самые первые дни развития заболевания. Супрессоры способны выключать иммунный ответ, что очень важно: если иммунная система не будет подавлена после обезвреживания антигена, составные части иммунитета будет поражать собственные здоровые клетки организма, что приведет к развитию аутоиммунных болезней.
Киллеры являются главным звеном клеточного иммунитета, т.к. они по белкам МНС узнают антигены и эффективно их поражают. Киллеры работают против клеток, пораженных вирусными инфекциями, а также опухолевых, мутированных, стареющих клеток организма.
И, наконец, охарактеризуем макрофаги . Эти клетки происходят из моноцитов, относящихся к агранулярным лейкоцитам. Главная функция макрофагов- способность к фагоцитозу различных антигенов
34. Защитные функции крови. Иммунитет и свёртывание крови (частично дублирует предидущие вопросы).
Свертывание крови
При нарушении целостности кровеносной системы уменьшение кровопотери обеспечивает система гемостаза. Гемостаз поддерживается двумя путями: остановкой кровотечения с помощью тромбоцитов и свертыванием крови. В данном разделе основное внимание уделено ферментативным реакциям свертывания крови. Повторное растворение сгустков крови, фибринолиз, рассмотрен на с. 284.
Номенклатура факторов свертывания крови несколько запутана. Факторы нумеруются римскими цифрами, при этом активированная форма фактора в наименовании содержит дополнительно букву «а» после римской цифры. Многие факторы являются протеиназами. На схеме неактивные предшественники протеиназ представлены в виде окружностей, а активные ферменты — окрашенными кружочками с вырезанным сектором. Вспомогательные факторы показаны в виде прямоугольников.
А.Свертывание крови
При свертывании крови происходит ферментативное превращение растворимого белка плазмы фибриногена(фактора I, см. рис. 71) в фибриновый полимер, сеть волокон нерастворимого белка. В этой реакции принимает участие фермент тромбин (фактор IIа), который протеолитически отщепляет от молекулы фибриногена небольшой пептидный фрагмент, в результате чего освобождаются участки связывания, что позволяет молекуле фибрина агрегировать в полимер. Затем с помощью глутамин-трансферазы (фактора XIII) образуются изопептидные связи боковых цепей аминокислот фибрина, что приводит к формированию нерастворимого фибринового сгустка (тромба).
Свертывание крови может запускаться двумя различными путями: вследствие нарушения целостности ткани (внесосудистый путь, на схеме справа) или процессами, которые начинаются на внутренней поверхности сосуда (внутрисосудистый путь, на схеме слева). В обоих случаях запускается каскад протеолитических реакций: из неактивных предшественников ферментов (зимогенов, условно обозначаемых на схеме окружностями) путем отщепления пептидов образуются активные сериновые протеиназы (обозначаемые на схеме окрашенными кружочками с вырезанным сектором), которые в свою очередь действуют на другие белки. Оба реакционных пути нуждаются в ионах Са2+ и фосфолипидах [ФЛ (PL)] и оба завершаются активацией фактором Ха протромбина (фактора II) с образованием тромбина (IIа).
Внутрисосудистый путь инициируется коллагеном, который в норме не экспонирован на внутренней поверхности кровеносных сосудов; его контакт с кровью приводит к активации фактора XII. Внесосудистый путь активации начинается с освобожденияфактора III (тканевого тромбопластина) из поврежденных клеток ткани. В течение нескольких секунд этот фактор приводит к свертыванию крови в области раны.
Факторы свертывания II, VII, IX и X содержат необычную аминокислоту, γ-карбоксиглутаминовую (Gla). Остатки Gla, которые образуются в результате посттрансляционного карбоксилирования остатков глутаминовой кислоты, группируются в особых белковых доменах. Они присоединяют ионы Са2+ и вследствие этого связывают соответствующие регуляторные факторы с фосфолипидами на поверхности плазматической мембраны. На рисунке это схематически представлено на примере протромбинового комплекса (Va, Ха и II). Вещества, способные связывать свободные ионы Са2+ в виде комплекса, например цитрат, предотвращают это взаимодействие с фосфолипидами и тормозят свертывание. Для синтеза остатков Gla необходим в качестве кофактора витамин К (см. с. 342). Антагонисты витамина К, такие, как дикумарин, подавляют синтез активных факторов коагуляции и действуют поэтому также как ингибиторы свертывания.
Генетически обусловленный дефицит отдельных факторов свертывания приводит к кровоточивости (гемофилия).
Контроль за свертыванием крови (не показан на схеме). Процесс свертывания крови находится в постоянном равновесии между активацией и торможением. Для торможения в плазме имеются очень эффективные ингибиторы протеиназ. Сериновые протеиназы системы свертывания инактивируются антитромбином. Его действие усиливается сульфатированным глюкозаминогликаном — гепарином (см. с. 336). Тромбомодулин, расположенный на внутренней стенке кровеносных сосудов, инактивирует тромбин, образуя с ним стехиометрический комплекс. За протеолитическое разрушение факторов V и VIII в плазме отвечает белок с. Этот белок в свою очередь активируется тромбином и, тем самым, реализуется самотормозящийся механизм свертывания крови.
Дата: 2019-05-29, просмотров: 196.