Особенности организации хроматина в нервных клетках
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Хроматин всех эукариот организован в виде серии повторяющихся нуклеопротеидных частиц - нуклеосом. Каждая нуклеосома состоит из так называемого кора, содержащего октамер гистонов Н2А, Н2В, НЗ, Н4 и обернутый вокруг него участок ДНК - 146 н. п., а также линкерной области, ассоциированной с гистоном HI, играющим особую роль в соединении нуклеосом друг с другом и в образовании наднуклеосомньгх уровней организации хроматина.

Нуклеосомная и наднуклеосомная организации, несомненно, играют важную, хотя и во многом еще не выясненную роль в функциональной активности хроматина. Укладка двуспиральной ДНК в нуклеосоме сопровождается сильными искажениями ее вторичной структуры и кардинально изменяет условия ее взаимодействия с различными регуляторными белками. Показано, что наличие нуклеосом в промоторной области генов препятствует инициации транскрипции РНК-голимеразой II. В то же время наличие нуклеосом в кодирующей области не препятствует элонгации уже инициированных цепей мРНК. Поэтому начальные реакции транскрипции генов in vivo обеспечиваются специальными механизмами, исключающими образование нуклеосом в критических участках промоторной области. В кодирующей же области активно транскрибируемых генов отмечается лишь частичное нарушение нуклеосомной структуры, объясняемое временным вытеснением гистонов движущейся РНК-полимеразой.

Образование локальных наднуклеосомных структур с участием гистона HI, по-видимому, является универсальным самоподдерживающимся механизмом выключения генов. Исследования последних лет показали также, что тканеспецифическая транскрипция генов обеспечивается сложными взаимодействиями различных негативных и позитивных регуляторов, узнающих специфические последовательности в промоторах индивидуальных генов. Характерными особенностями структуры активных участков хроматина являются: частичное или полное нарушение нуклеосомной и наднуклеосомной организации, присутствие особых вариантов гистонов или их постсинтетическая модификация, существование локальных торзионных напряжений в доменах хроматина и избирательная ассоциация с ядерным матриксом.

Преобладающая часть ядерной ДНК мозга организована в типичную нуклеосомную структуру. Однако по сравнению с хроматином печени хроматин мозга более гетерогенен по длине линкерных участков и обладает более разнообразным набором негистоновых белков. Длина нуклеосомных единиц в большинстве эукариотических клеток близка к 200 н. п. Некоторые вариации этой величины связаны с изменчивостью в длине линкерных участков, тогда как с кором нуклеосом всегда ассоциирован фрагмент ДНК длиной 146 н. п. В дифференцированных нейронах неокортекса нуклеосомная ДНК необычно короткая и составляет - 160-162 н. п., а клетки неастропитарной глии неокортекса и нейроны мозжечка имеют обычные по длине нуклеосомы. Переход в нейронах неокортекса к атипично коротким нуклеосомам коррелирует с окончательной дифференцировкой этих нейронов: у кроликов, мышей и крыс он проходит в первую неделю постнатального онтогенеза, а у более зрелорождающихся морских свинок - между 32-м ч 44-м днями эмбриогенеза. Аналогично, в пренатально дифференцирующихся нейронах гипоталамуса крыс короткие нуклеосомы присутствуют уже за два дня до рождения.

Укорочение нуклеосом не всегда сопровождает процесс морфофункционального созревания нейронов. Например, укорочения не наблюдается при созревании постмитотических нейронов неокортекса, изолированных из мозга 16-дневных эмбрионов крыс и культивируемых на селективной среде до возраста, соответствующего второй неделе постнаталъного онтогенеза. В мозжечке созревание зернистых нейронов в первый месяц постнатального онтогенеза сопровождается не уменьшением, а даже увеличением длины нуклеосом. Вообще усредненные данные о длине нуклеосом не следует автоматически переносить на всю сложную популяцию нервных клеток. Так, в мозге крыс процесс укорочения нуклеосом характерен только для нейронов глубоких слоев неокортекса. Существенная разница в длине нуклеосом существует и у различных глиальных клеток.

Функциональное значение описанного перехода к коротким нуклеосомам при созревании нейронов неокортекса до настоящего времени остается невыясненным. Предположение о том, что укороченные нуклеосомы обеспечивают укладку полинуклеосомной цепи в более открытую, способствующую транскрипции наднуклеосомную структуру, является упрощенным.

Исследования этого вопроса на более широком круге объектов подтверждают, что однозначной связи между транскрипционной активностью генов и длиной нуклеосом не существует. Транскрипционная активность хроматина определяется, как уже отмечено выше, большим числом факторов. Возможно, существование коротких нуклеосом в хроматине нейронов лишь каким-то образом облегчает действие этих факторов. В частности, могут изменяться условия взаимодействия линкерных участков хроматина с гистоном HI и негистоновыми белками. В хроматине нейронов неокортекса содержание гистона HI составляет - 0,5 молекулы на 1 нуклеосому, что примерно в два раза ниже, чем его содержание в хроматине глиальных клеток и клеток соматических тканей. Это хорошо согласуется с данными о более высокой доле активного хроматина в мозге по сравнению с соматическими тканями и в нейронах по сравнению с глиальными клетками.

Фракция активного хроматина нейронов практически не содержит гистона HI, а аналогичная фракция хроматина из клеток неастроцитарной глии содержит его в очень малом количестве. Напротив, фракции неактивного хроматина нейронов и глии содержат сравнительно высокие количества HI. Снижение доли активного хроматина в нейронах и глиальных клетках мозга человека при болезни Альцгеймера также коррелирует с повышением содержания гистона HI.

Таким образом, роль гистона HI в образовании наднуклеосомных уровней организации хроматина, а также его избирательное вытеснение из активных участков хроматина в настоящее время уже не вызывают сомнений. Менее изучена роль различных вариантов гистона HI. Известно, что из шести обнаруженных в клетках млекопитающих вариантов гистона HI, HI а и Н1в в значительных количествах обнаруживаются лишь в активно делящихся клетках, Hlc, - d, - е - в делящихся и неделящихся, а гистон Н1° характерен для терминально дифференцированных неделящихся клеток. Прекращение пролиферативной активности нейронов коррелирует с накоплением гистона Hie, а терминальная дифференцировка нейронов - с накоплением HI°.

Коровые гистоны в хроматине нейронов неокортекса представлены большим числом вариантов, для многих из которых обнаружены формы, конъюгированные с убиквитином. Одна из форм гистона Н2В, по-видимому, является мозгоспецифической. Высокое содержание соединенных с убиквитином форм гистонов в хроматине обычно связывают с высокой матричной активностью.

Хроматин нервных клеток является динамичным, активным образованием, состояние которого изменяется в ходе нормального развития и при действии различных внешних и внутренних стимулов. В первые недели постнатального онтогенеза в хроматине нейронов неокортекса крыс происходит заметное уменьшение числа участков с повышенной чувствительностью к ДНКазе в мозге стареющих животных эти изменения еще более выражены, что свидетельствует об уменьшении матричной активности хроматина в ходе старения.

Одним из механизмов регуляции матричной активности хроматина является обратимое ацетилирование гистонов. В ядрах нейронов ацетилирование гистонов более выражено по сравнению с глиальными клетками. Это коррелирует с более высокой активностью эндогенных РНК-полимераз нейронов и с большим числом активных участков инициации транскрипции. С другой стороны, в первые дни постнатального онтогенеза степень ацетилирования гистонов в неокортексе крыс быстро уменьшается.

Обнаружено, что конечная дифференцировка нейронов неокортекса и мозжечка крыс в первые недели постнатального онтогенеза сопровождается изменениями в наборах негистоновых белков хроматина, наиболее примечательным из которых можно считать появление белков - J5 и - 38 кД, имеющих специфическое сродство к однонитчатой ДНК. Свое влияние на матричные процессы они оказывают, способствуя локальному расплетению двойной спирали ДНК.

В ядрах нейронов неокортекса обнаружены также белки, имеющие сродство к специфической левоспиральной форме ДНК - Z-ДНК. В последние годы такие Z-ДНК-связывающие белки привлекают большое внимание как возможные регуляторы транскрипции и других генетических процессов.

При терминальной дифферениировке нейронов происходят также изменения в наборах особой фракции негистоновых белков, прочно связанных с ДНК, некоторые из которых являются мозгоспецифическими.

Важную роль в регуляции транскрипции генов могут играть, наконец, процессы фосфорилирования, метилирования и, возможно, другие посттрансляционные модификации негистоновых белков хроматина. Заметные изменения в наборах фосфорилируемых и метилируемых негистоновых белков наблюдаются в ядрах нейронов и глиальных клеток неокортекса крыс в первые недели постнатального онтогенеза. При этом главное различие между ядрами нейронов и глиальных клеток состоит в большем мешлировании группы специфических для нейронов негистоновых белков - 100 кД. В ядрах нейронов и глии мозга мышей обнаружены протеинкиназная и метилазная активности, значительная часть которых прочно ассоциирована с хроматином.

Протеинкиназа осуществляет цАМФ-независимое фосфорилирование белков хроматина. Ее активность в ядрах нейронов значительно выше, чем в ядрах глиальных клеток. При действии ряда нейромедиаторов на нейроны мозга крыс наблюдается фосфорилирование ядерных белков и стимуляция синтеза РНК. Фосфорилирование части негистоновых белков индуцируется в клетках верхнего шейного ганглия при действии фактора роста нервов. В хромаффинных клетках надпочечников фосфорилирование негистоновых белков хроматина пАМФ-зависимой протеинкиназой является центральным звеном в транссинаптической регуляции синтеза тирозин-3-мо-нооксигеназы ацетилхолином. Показано, что фосфорилирование негистоновых белков хроматина повышается при выработке оборонительных условных рефлексов.

 

Дата: 2019-05-29, просмотров: 252.