Надпровідні перемикачі й елементи пам’яті
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Ідея про використання надпровідників в ЕОМ виникла давно. Ще в середині 50-х років було запропоновано надпровідний пристрій – кріотрон, у якому реалізуються два стани і який може переключатися з одного стану в інший . Кріотрон - пристрій нескладний . У своїй первісній і найпростішій формі він являв собою танталовий дріт - вентиль, навколо якого були намотані витки з ніобію (Рис .17). І тантал, і ніобій - надпровідники, але критична температура танталу 4,4 К , а ніобію - 9,2 К. Тому в гелієвій ванні при температурі 4,2 К вентиль (і тим більше обмотка) знаходиться у надпровідному стані і не робить опору струму. При подачі в обмотку струму достатньої величини на поверхні вентиля з'являється магнітне поле , що перевищує критичне, і танталовий дріт переходить у нормальний стан з кінцевим опором. Керуюча обмотка, що має більш високу критичну температуру, залишається при цьому у надпровідному стані.

Такий пристрій діє як реле, замкнуте у надпровідному і розімкнуте в нормальному стані. Так можна записувати 0 чи 1, тобто створювати найпростіший елемент пам'яті. З декількох кріотронів, з'єднуючи їх у схему, можна створити пристрій, що розмикає одні і замикає інші канали для проходження струму, тобто створювати логічні й інші елементи ЕОМ.

 

Рис .17 Рис .18

 

Сказане можна проілюструвати простим прикладом. Нехай струм розподіляється по двох рівнобіжних ланцюгах, що містять кріотрони (Рис. 18). Якщо обидва розгалуження є надпровідними, то струм буде розгалужуватися по них відповідно до їхніх індуктивностей. Якщо тепер кріотрон К1 на короткий час перевести в нормальний стан, то загальний струм піде по правому ланцюзі. Такий розподіл струму буде стабільним доти , поки , скажемо, кріотрон К2 не буде переведений у нормальний стан керуючим імпульсом, поданим на його котушку. Такий імпульс перекидає струм у лівий ланцюг.

За допомогою кріотронів К3 і К4 можна визначати, у якому ланцюзі тече надпровідний струм, тобто робити операцію зчитування. Кріотрон , керований струмом , що протікає по даному розгалуженню , знаходиться в нормальному стані і при подачі на нього імпульсу зчитування дасть сигнал у виді напруги. Кріотрон в іншому ланцюзі залишається у надпровідному стані. Дротовий кріотрон є простий по конструкції. Поряд з цим він відрізнявся малою розсіюючою тепловою потужністю при переході в нормальний стан. І все-таки для кріоЕОМ дротові кріотрони виявилися непридатними - вони працювали занадто повільно. У змаганні із швидкодіючими напівпровідниковими елементами дротовий кріотрон програє. І не тому, що "повільна" сама надпровідність: перехід дротини з одного стану в другий відбувається дуже швидко. Швидкодія кріотронного перемикача визначається його сталою часу τ = L/R, де L - індуктивність керуючої обмотки, a R - опір вентиля в нормальному стані. У дротових кріотронів τ = 10-3...10-4 с - це явно недостатньо для їхнього застосування в сучасних машинах. Щоб зменшити постійну часу τ, необхідно гранично збільшити опір R і зменшити індуктивність.

Цю задачу можна вирішити, якщо замість дротин у кріотроні використовувати тонкі плівки, отримані напилюванням у вакуумі. Такий плівковий кріотрон показаний на рисунку 19.

 

Рис .19

 

Вентиль тут виконаний у виді тонкої плівки олова, нанесеної на підкладку, а керуючим елементом служить свинцева плівка, що може розташовуватися або перпендикулярно вентилю (поперечний кріотрон, рис. 19,а), або паралельно (подовжній кріотрон, рис. 19,б). Зміною струму через керуючу плівку можна переводити вентиль із надпровідного стану у нормальний і навпаки , тобто включати і виключати ланцюг. Обидві плівки відділені одна від одної тонким шаром ізолятора (звичайно це окис кремнію) . Вони мають товщину порядку 10-7 – 10-9 м, а тому малу індуктивність і високий опір.

 

Дата: 2019-05-29, просмотров: 205.