Надпровідник у магнітному полі
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Те, що в магнітному полі, яке перевищує деяке граничне чи критичне значення, надпровідність зникає, зовсім безперечно. Це експериментальний факт. Навіть, якщо якийсь метал і позбудеться опору при охолодженні, то він може знову повернутися в нормальний стан, потрапивши в зовнішнє магнітне поле. При цьому в металі відновлюється приблизно той же опір, що був в нього при температурі, що перевищує критичну температуру Тк надпровідного переходу. Саме критичне поле з магнітною індукцією Вк залежить від температури: індукція дорівнює нулю при температурі Т = Тк і зростає при температурі, що прямує до нуля. Звичайно, усі метали мають різні значення магнітної індукції Вк; але для багатьох з них залежність індукції Вк від температури подібна до тої , що зображена на рисунку 3, а. Це породило впевненість, що механізм надпровідності для всіх металів якісно той самий. Рисунок 3, б можна розглядати як діаграму, де лінія залежності В(Т) для кожного металу розмежовує області існування різних фаз. Область нижче цієї лінії відповідає надпровідному стану , вище - нормальному.

Розглянемо тепер поводження ідеального провідника (тобто провідника, в якому відсутній електричний опір) в різних умовах. У такого провідника при охолодженні нижче критичної температури електропровідність стає нескінченною. Саме ця властивість і дозволяла вважати надпровідник ідеальним провідником.

Магнітні властивості ідеального провідника випливали із закону індукції Фарадея й умови нескінченної електропровідності. Припустимо , що перехід металу у надпровідний стан відбувається при відсутності магнітного поля і зовнішнє магнітне поле прикладається тільки після зникнення опору.

Тут не треба ніяких тонких експериментів, щоб переконатися в тім, що магнітне поле всередину надпровідника не проникає . Дійсно, коли метал потрапляє в магнітне поле, то на його поверхні внаслідок електромагнітної індукції виникають незатухаючі замкнуті струми (їх часто називають екрануючими струмами ) , що створюють своє магнітне поле, індукція якого по величині дорівнює індукції зовнішнього магнітного поля, а напрямки векторів магнітної індукції цих полів протилежні. У результаті індукція сумарного магнітного поля в середині ідеального провідника дорівнює нулю. Виникає ситуація, при якій метал ніби перешкоджає проникненню в нього магнітного поля, тобто поводиться як діамагнетик. Якщо тепер зовнішнє магнітне поле забрати, то зразок виявиться у своєму початковому не намагніченому стані. Розглянемо іншу послідовність подій. Метал, що знаходиться в нормальному стані, помістимо в магнітне поле і потім охолодимо його для того, щоб він перейшов у надпровідний стан. Зникнення електричного опору не повинне робити впливу на намагніченість зразка, і тому розподіл магнітного потоку в ньому не зміниться. Якщо тепер прикладене магнітне поле забрати, то зміна потоку зовнішнього магнітного поля через обсяг зразка приведе (за законом індукції) до появи незатухаючих струмів, магнітне поле яких точно компенсує зміну зовнішнього магнітного поля. В результаті захоплене поле не зможе вийти: воно виявиться "замороженим" в об’ємі зразка і залишиться там як у своєрідній пастці (Рис.5).

Як бачимо, магнітні властивості ідеального провідника залежать від того, яким шляхом він попадає в магнітне поле. Справді , наприкінці цих двох операцій - накладання і зняття поля - метал виявляється в тих самих умовах - при однаковій температурі і нульовому зовнішньому магнітному полю. Але магнітна індукція металу-зразка в обох випадках зовсім різна - нульова в першому випадку і кінцева, залежна від вихідного поля в другому.

 

Рис .5

 

Ці представлення , засновані на багаторазово перевірених законах електромагнетизму, здавалося б, відмінно відповідали експерименту. У всякому разі, в одному зі своїх експериментів Камерлінг-Оннес підтвердив таке складне поводження надпровідника. І все-таки, намальована вище картина виявилася невірною. Надпровідники, як з'ясувалося ,- це щось більше, ніж речовини з нескінченною електропровідністю.

У 1933 році німецькі фізики Мейснер і Оксенфельд вирішили експериментально перевірити, як саме розподіляється магнітне поле навколо надпровідника. Результат виявився несподіваним. Незалежно від умов проведення експерименту магнітне поле в глиб надпровідника не проникало. Разючий факт, виявлений Мейснером і Оксенфельдом, полягав у тому, що надпровідник, охолоджений нижче критичної температури в постійному магнітному полі, мимовільно виштовхує це поле зі свого об’єму, переходячи в стан, при якому магнітна індукція В рівна нулю , тобто стан ідеального діамагнетизму. Це явище одержало назву ефекту Мейснера . Як відомо, метали, за винятком феромагнетиків, під час відсутності зовнішнього магнітного поля володіють нульовою магнітною індукцією. Поміщені в зовнішнє магнітне поле, вони намагнічуються, тобто всередині "наводиться" магнітне поле. Сумарне магнітне поле речовини, внесеної в зовнішнє магнітне поле, характеризується магнітною індукцією В , рівною сумі індукції В0 зовнішнього й індукції В1 внутрішнього магнітних полів, тобто В = В0 + В1. При цьому сумарне магнітне поле може бути як більше, так і менше магнітного поля. Для того щоб визначити ступінь участі речовини в створенні магнітного поля з індукцією В , знаходять відношення значень індукції В / В0 =μ. Коефіцієнт μ називають магнітною проникністю речовини. Речовини, у яких при накладенні зовнішнього магнітного поля виникаюче внутрішнє поле додається до зовнішнього (μ>1), називаються парамагнетиками. У діамагнетиках (μ < 1) спостерігається ослаблення прикладеного поля, внутрішнє поле спрямоване проти зовнішнього, і індукція В < В0. У надпровідниках В = 0, що відповідає нульовій магнітній проникності. Має місце, як говорять, ефект ідеального діамагнетизму.

Отже, на відміну від ідеальних провідників надпровідники не дозволяють магнітному полю проникнути в їхню товщу. Якщо надпровідний провідник помістити в зовнішнє магнітне поле, то в поверхневому шарі металу виникнуть екрануючі струми, які створять всередині провідника магнітне поле, рівне і протилежне зовнішньому. Розподіл поля стає таким, як зображено на рисунку 6. Магнітне поле, раніше однорідне, пронизуючи нормальний метал, при температурі Т < Тк виштовхується з металу, концентруючись на його периферії.

 

Рис .6

 

Тут ми зустрічаємося з цікавим фактом. Добре відомо, що в замкнутому контурі струм з'являється тільки в тому випадку, коли електромагнітне поле міняється в часі. У випадку ефекту Мейснера це поле постійне в часі. Відповідно до відомих фізичних представлень, здавалося б, немає ніяких причин для появи струмів, що створюють власне магнітне поле, спрямоване протилежно прикладеному.

Однак діамагнетизм надпровідників можна продемонструвати за допомогою дуже ефектного досліду. Уявіть собі магніт, що вільно парить у повітрі над шаром надпровідного матеріалу. Цей експеримент , який іноді називають "магометовою труною" , був здійснений ще в 1945 році московським професором В. К. Аркадєвим. Постійний магніт, що лежить на свинцевій пластинці, піднімався на деяку висоту і висів над пластинкою, у якій циркулювали незатухаючі надпровідні струми. Магніт вільно парив над шаром надпровідника, цілком підтримуваний власним магнітним полем.

Для магнітного поля надпровідник - нездоланна перешкода, площина, від якої, як від дзеркала, відбивається це поле. Найменший рух магніту викликає зміну магнітного поля надпровідних струмів. Зі збільшенням магнітного поля надпровідні струми теж зростають, щоб зберегти ідеальний діамагнетизм. Коли прикладене магнітне поле стає досить великим, екрануючі струми досягають свого критичного значення і метал втрачає надпровідні властивості. При цьому струми зникають, і магнітне поле проникає в метал.

 

Дата: 2019-05-29, просмотров: 210.