Моделирование издержек и прибыли предприятия (фирмы)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В основе построения моделей поведения производителя (отдельного предприятия или фирмы; объединения или отрасли) лежит представление о том, что производитель стремится к достижению такого состояния, при котором ему была бы обеспечена наибольшая прибыль при сложившихся рыночных условиях, т.е. прежде всего при имеющейся системе цен.

Наиболее простая модель оптимального поведения производителя в условиях совершенной конкуренции имеет следующий вид: пусть предприятие (фирма) производит один продукт в количестве y физических единиц. Если p экзогенно заданная цена этого продукта и фирма реализует свой выпуск полностью, то она получает валовой доход (выручку) в размере

 

 

В процессе создания этого количества продукта фирма несет производственные издержки в размере C ( y ). При этом естественно считать, что C' ( y ) > 0, т.е. издержки возрастают с увеличением объема производства. Также обычно полагают, что C'' ( y ) > 0. Это означает, что дополнительные (маргинальные) издержки на производство каждой дополнительной единицы продукции возрастают по мере увеличения объема производства. Это предположение связано с тем, что при рационально организованном производстве, при малых объемах могут быть использованы лучшие машины и высококвалифицированные работники, которых уже не окажется в распоряжении фирмы,когда объем производства вырастет. На рис. 4.10 представлены типичные графики функций R ( y ) и C ( y ). Производственные издержки состоят из следующих составных частей:

1) материальные затраты C m , в число которых входят расходы на сырье, материалы, полуфабрикаты и т.п.

Разность между валовым доходом и материальными затратами называется добавленной стоимостью (условно чистой продукцией):

 

 

2) расходы на оплату труда C L ;

 

Рис. 10. Линии выручки и издержек предприятия

 

3) расходы, связанные с использованием, ремонтом машин и оборудования, амортизация, так называемая оплата услуг капитала C k ;

4) дополнительные расходы C r , связанные с расширением производства, строительством новых зданий, подъездных путей, линий связи и т.д.

Совокупные производственные издержки:

 

 

Как уже было отмечено выше,

 


однако эта зависимость от объема выпуска ( у ) для разных видов издержек различна. А именно имеют место:

а) постоянные расходы C 0 , которые практически не зависят от y , в т.ч. оплата административного персонала, аренда и содержание зданий и помещений, амортизационные отчисления, проценты за кредит, услуги связи и т.п.;

б) пропорциональные объему выпуска (линейные) затраты C 1 , сюда входят материальные затраты C m , оплата труда производственного персонала (часть C L ), расходы по содержанию действующего оборудования и машин (часть C k ) и т.п.:

 

 

где а обобщенный показатель затрат указанных видов в расчете на одно изделие;

в) сверхпропорциональные (нелинейные) затраты С 2 , в составе которых выступают приобретение новых машин и технологий (т.е. затраты типа С r ), оплата сверхурочного труда и т.п. Для математического описания этого вида затрат обычно используется степенная зависимость

 

 

Таким образом, для представления совокупных издержек можно использовать модель

 

 

(Заметим, что условия C' ( y ) > 0, C'' ( y ) > 0 для этой функции выполнены.)

Рассмотрим возможные варианты поведения предприятия (фирмы) для двух случаев:

1. Предприятие имеет достаточно большой резерв производственных мощностей и не стремится к расширению производства, поэтому можно полагать, что C 2 = 0 и совокупные издержки являются линейной функцией объема выпуска:

 

 

Прибыль составит

 

 

Очевидно, что при малых объемах выпуска

 

 

фирма несет убытки, так как П < 0.

Здесь y w точка безубыточности (порог рентабельности), определяемая соотношением

 

 

Если y > y w , то фирма получает прибыль, и окончательное решение об объеме выпуска зависит от состояния рынка сбыта производимой продукции (см. рис. 10).

2. В более общем случае, когда С 2 0, имеются две точки безубыточности и причем положительную прибыль фирма получит, если объем выпуска y удовлетворяет условию

 

 

На этом отрезке в точке достигается наибольшее значение прибыли. Таким образом, существует оптимальное решение задачи о максимизации прибыли. В точке А , соответствующей издержкам при оптимальном выпуске, касательная к кривой издержек С параллельна прямой линии дохода R .

Следует заметить, что окончательное решение фирмы также зависит от состояния рынка, но с точки зрения соблюдения экономических интересов ей следует рекомендовать оптимизирующее значение выпуска (рис. 11).

 

Рис. 11. Оптимальный объем выпуска

 

В общем случае, когда С ( у ) является нелинейной возрастающей и выпуклой вниз функцией (так как С' ( у ) > 0 и С'' ( у ) > 0) объема выпуска, ситуация полностью аналогична той, которая рассмотрена в пункте 2. По определению прибылью считается величина

 


Точки безубыточности и определяются из условия равенства прибыли нулю, а максимальное ее значение достигается в точке которая удовлетворяет уравнению

 

или

 

Таким образом, оптимальный объем производства характеризуется тем, что в этом состоянии маргинальный валовой доход ( R ( y )) в точности равен маргинальным издержкам C ( y ).

В самом деле, если y < то R ( y ) > C ( y ), и тогда следует увеличить выпуск продукции, поскольку ожидаемый дополнительный доход превысит ожидаемые дополнительные издержки. Если же y > то R ( y ) < C ( y ), и всякое увеличение объема уменьшит прибыль, поэтому естественно рекомендовать уменьшить объем производства и придти в состояние y = (рис. 12).

 

Рис. 12. Точка максимума прибылии зона безубыточности

 

(*)

 

Нетрудно видеть, что при увеличении цены ( р ) оптимальный выпуск, а также прибыль увеличиваются, т.е.


 

Это верно также и в общем случае, так как

 

 

Пример. Фирма производит сельскохозяйственные машины в количестве у штук, причем объем производства в принципе может изменяться от 50 до 220 штук в месяц. При этом естественно увеличение объема производства потребует увеличения затрат как пропорциональных, так и сверхпропорциональных (нелинейных), поскольку потребуется приобрести новое оборудование и расширить производственные площади.

В конкретном примере будем исходить из того, что общие издержки (себестоимость) на производство продукции в количестве у изделий выражаются формулой

 

C ( y ) = 1000 + 20 y + 0,1 y 2 (тыс. руб.).

 

Это означает, что постоянные издержки

 

C 0 = 1000 (т. руб.),

 

пропорциональные затраты

 

C 1 = 20 y ,

 

т.е. обобщенный показатель этих затрат в расчете на одно изделие равен: а = 20 тыс. руб., а нелинейные затраты составят C 2 = 0,1 y 2 ( b = 0,1).

Приведенная выше формула для издержек является частным случаем общей формулы, где показатель h = 2.

Для нахождения оптимального объема производства воспользуемся формулой точки максимума прибыли (*), согласно которой имеем:

 

 

Совершенно очевидно, что объем производства, при котором достигается максимальная прибыль, весьма существенно определяется рыночной ценой изделия p .

В табл. 1 представлены результаты расчета оптимальных объемов при различных значениях цены от 40 до 60 тыс. рублей за изделие.

В первом столбце таблицы фигурируют возможные объемы выпуска у , второй столбец содержит данные о полных издержках С ( у ), в третьем столбце представлена себестоимость в расчете на одно изделие:

 

 

Таблица 1




Дата: 2019-05-29, просмотров: 188.