Учет неопределенных пассивных условий
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Неопределенные факторы, закон распределения которых неизвестен, являются наиболее характерными при исследовании качества адаптивных систем. Именно на этот случай следует ориентироваться при выборе гибких конструкторских решений. Методический учет таких факторов базируется на формировании специальных критериев, на основе которых принимаются решения. Критерии Вальда, Сэвиджа, Гурвица и Лапласа уже давно и прочно вошли в теорию принятия решений.

В соответствии с критерием Вальда в качестве оптимальной выбирается стратегия, гарантирующая выигрыш не меньший, чем "нижняя цена игры с природой":

. (1.17)

Правило выбора решения в соответствии с критерием Вальда можно интерпретировать следующим образом: матрица решений [Wir] дополняется еще одним столбцом из наименьших результатов Wir каждой строки. Выбрать надлежит тот вариант, в строке которого стоит наибольшее значение Wir этого столбца.

Выбранное таким образом решение полностью исключает риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Какие бы условия Vj не встретились, соответствующий результат не может оказаться ниже W. Это свойство заставляет считать критерий Вальда одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего как сознательно, так и неосознанно. Однако в практических ситуациях излишний пессимизм этого критерия может оказаться очень невыгодным.

Применение этого критерия может быть оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:

· о вероятности появления состояния Vj ничего не известно;

· с появлением состояния Vj необходимо считаться;

· реализуется лишь малое количество решений;

· не допускается никакой риск.

Критерий Байеса-Лапласа в отличие от критерия Вальда, учитывает каждое из возможных следствий всех вариантов решений:

. (1.18)

Соответствующее правило выбора можно интерпретировать следующим образом: матрица решений [Wij] дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбирается тот вариант, в строках которого стоит наибольшее значение Wir этого столбца.

Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования:

· вероятность появления состояния Vj известна и не зависит от времени;

· принятое решение теоретически допускает бесконечно большое

· количество реализаций;

· допускается некоторый риск при малых числах реализаций.

В соответствии с критерием Сэвиджа в качестве оптимальной выбирается такая стратегия, при которой величина риска принимает наименьшее значение в самой неблагополучной ситуации:

(1.19)

Здесь величину W можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Vj вместо варианта Ui выбрать другой, оптимальный для этого внешнего состояния, вариант.

Соответствующее критерию Сэвиджа правило выбора следующее: каждый элемент матрицы решений [Wij] вычитается из наибольшего результата max Wij соответствующего столбца. Разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей Wir. Выбирается тот вариант, в строке которого стоит наименьшее значение.

Согласно критерию Гурвица выбирается такая стратегия, которая занимает некоторое промежуточное положение между крайним пессимизмом и оптимизмом:

(1.20)

где

 - коэффициент пессимизма, выбираемый в интервале [,1].

Правило выбора согласно этому критерию следующее: матрица решений [Wij] дополняется столбцом, содержащим средние взвешенные наименьшего и наибольшего результатов для каждой строки (2.6). Выбирается тот вариант, в строках которого стоят наибольшие элементы Wir этого столбца.

При  =1 критерий Гурвица превращается в критерий Вальда (пессимиста), а при  = - в критерий азартного игрока. Отсюда ясно, какое значение имеет весовой множитель  . В технических приложениях правильно выбрать этот множитель бывает так же трудно, как правильно выбрать критерий. Поэтому чаще всего весовой множитель  =.5 принимается в качестве средней точки зрения.

Критерий Гурвица предъявляет к ситуации, в которой принимается решение, следующие требования:

· о вероятности появления состояния Vj ничего не известно;

· с появлением состояния Vj необходимо считаться;

· реализуется лишь малое количество решений;

· допускается некоторый риск.

Критерий Ходжа-Лемана базируется одновременно на критериях Вальда и Байеса-Лапласа:

. (1.20)

Правило выбора, соответствующее этому критерию, формулируется следующим образом: матрица решений [Wij] дополняется столбцом, составленным из средних взвешенных (с постоянными весами) математического ожидания и наименьшего результата каждой строки. Отбирается тот вариант решения, в строке которого стоит наибольшее значение этого столбца.

При z=1 критерий преобразуется в критерий Байеса-Лапласа, а при z=0 превращается в критерий Вальда. Таким образом, выбор параметра z подвержен влиянию субъективизма. Кроме того, без внимания остается и число реализаций. Поэтому этот критерий редко применяется при принятии технических решений.

Критерий Ходжа-Лемана предъявляет к ситуации, в которой принимается решение, следующие требования:

· о вероятности появления состояния Vj ничего не известно, но некоторые предположения о распределении вероятностей возможны;

· принятое решение теоретически допускает бесконечно большое количество реализаций; допускается некоторый риск при малых числах реализаций.

Общие рекомендаций по выбору того или иного критерия дать затруднительно. Однако отметим следующее: если в отдельных ситуациях не допустим даже минимальный риск, то следует применять критерий Вальда; если определенный риск вполне приемлем, то можно воспользоваться критерием Сэвиджа. Можно рекомендовать одновременно применять поочередно различные критерии. После этого среди нескольких вариантов, отобранных таким образом в качестве оптимальных, приходится волевым решением выделять некоторое окончательное решение.

Такой подход позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабляет влияние субъективного фактора. Кроме того, в области технических задач различные критерии часто приводят к одному результату.

Применение данных критериев с методической точки зрения удобно продемонстрировать на примере одной задачи.

Пример 1.3. Обоснование состава ремонтной бригады.

На предприятии решается вопрос о создании ремонтной бригады. Основываясь на применениии критериев Вальда, Лапласа, Сэвиджа и Гурвица, определить наиболее целесообразное число членов бригады. Исходные данные сведены в табл. 1.1, в ячейках которой занесены доходы при разных вариантах (стратегиях). Под стратегией понимается x -число членов бригады и R - количество станков, требующих ремонта.

Таблица 1.1

x\R 40 30 20 10
5 50 100 180 250
4 80 70 80 230
3 210 180 120 210
2 300 220 190 150

1. Критерий Вальда. Как указывалось выше критерий Вальда выражается в двухь формах, зависящих от вида исходных данных.

· Если исходными данными являются потери при различных стратегиях, то критерий выбирается в форме минимакса (минимальные потери из минимально возможных), то есть критерий (2.6) имеет вид

.

Таким образом, справа дописывается столбец максимумов по строкам.

Таблица 1.3

x\R 40 30 20 10 max
5 50 100 180 250 250
4 80 70 80 230 230
3 210 180 120 210 210
2 300 220 190 150 300

Для удобства запишем его в виде транспонированного вектора max uxR = <250, 230, 210, 300>т и выбираем минимальное значение 210. Таким образом, при данных условиях рациональным решением будет x=3, R=10, min uxR = 210.

· Если в таблице фигурируют доходы при различных стратегиях, то критерий Вальда принимает форму максимина (максимум из минимумов), то есть критерий (2.6) имеет вид

.

Таким образом, справа дописывается столбец минимумов по строкам.

Таблица 1.3

x\R 40 30 20 10 Min
5 50 100 180 250 50
4 80 70 80 230 70
3 210 180 120 210 120
2 300 220 190 150 150

Тогда решающий столбец имеет вид max uxR = <50, 70, 120, 150>т. Максиминное значение равно 150. Таким образом, при данных условиях рациональным решением будет: x=2, R=10, max uxR = 150.

2. Критерий Лапласа. Как известно, критерий Лапласа предполагает, что все состояния системы равновероятны и рациональные решения выбираются по критерию:

.

При данных предыдущего примера в случае, если в таблице записаны потери при том или ином варианте, значение критериев подсчитывается так:

W1 = 0.25 (50+100+180+250) = 145;

W2 = 0.25 (80+70+80+230) = 115;

W3 = 0.25 (210+180+120+210) = 180;

W4 = 0.25 (300+220+190+150) = 215.

Таким образом наилучшим решением будет x=4, минимум потерь (наибольший выигрыш) равен 115.

3. Критерий Сэвиджа. В этом случае составляется новая матрица, элементы которой составляются по правилу:

Составим матрицу W(xi, Rj) - матрицу сожалений для случая, когда uij - потери, используя предыдущие данные. Соответствующая матрица получается путем вычисления значений min(xi, Rj), равных 50, 70, 80 и 150 из столбцов 1, 2, 3, 4, соответственно

          max W(xi, Rj)
  0 30 100 100 100
W(xi, Rj)= 30 0 0 0 80
  160 110 40 60 160
  250 150 110 0 250

Таким образом, минимальные потери будут при x=2, когда max W(xi, Rj)=80. Отметим, что независимо от того, является функцией сожаления, определяющая потери. Поэтому здесь можно применить только минимаксный критерий.

4. Критерий Гурвица. В отличие от примененных выше "жестких" критериев, критерий Гурвица является "гибким", так как позволяет варьировать "степень оптимизма-пессимизма". Таким образом, этот критерий устанавливает баланс между случаями крайнего оптимизма или пессимизма, путем введения коэффициента веса  . Как указывалось выше, критерий записывается в виде:

Применим данный критерий к нашим исходным данным, полагая  =.5. Матрица значений W будет выглядеть следующим образом:

Таблица 1.4

  min u(xi, Rj) max u(xi, Rj)  min u(xi, Rj) +  max u(xi, Rj)
5 50 250 15
4 70 230 15
3 120 210 165
2 150 300 225

Таким образом, в результате применения этого критерия получилось, что существуют два равнозначных варианта:

x1 = 5, x2 = 4 при одинаковых значениях W1 = W2 = 15.

 

Учет активных условий

Как правило, решение практических задач, связанных с оценкой качества и надежности изделий лесного машиностроения, зависит не только от оперирующей стороны (допустим, конструктора), но и от действий других субъектов системы (например, технолога-лесозаготовителя). Каждая из сторон преследует собственные цели, не всегда совпадающие друг с другом. Неопределенность такого рода при принятии решений относят к классу поведенческих неопределенностей. Теоретической основой нахождения оптимального решения в условиях неопределенности и конфликтных ситуаций является теория игр. Игра - это математическая модель процесса функционирования конфликтующих элементов систем, в котором действия игроков происходят по определенным правилам, называемых стратегиями. Ее широкому распространению в последнее время способствовало как развитие ЭВМ, так и создание аналитического аппарата, позволяющего находить аналитические решения для широкого класса задач. Основной постулат теории игр - любой субъект системы по меньшей мере так же разумен, как и оперирующая сторона и делает все возможное, чтобы достигнуть своих целей. От реального конфликта игра (математическая модель конфликта) отличается тем, что она ведется по определенным правилам, которые устанавливают порядок и очередность действий субъектов системы, их информированность, порядок обмена информацией, формирование результата игры.

Существует много классов игр, различающихся по количеству игроков, числу ходов, характеру функций выигрыша и т.д. Выделим следующие основные классы игр:

· антагонистические (игры со строгим соперничеством) и неантогонистические. В первом случае цели игроков противоположны, во - втором - могут совпадать;

· стратегические и нестратегические (в первых субъект системы действует независимо от остальных, преследуя свои цели, во-вторых субъекты выбирают единую для всех стратегию);

· парные игры и игры для N-лиц;

· коалиционные и бескоалиционные;

· кооперативные и некооперативные (в первых возможен обмен информацией о возможных стратегиях игроков);

· конечные и бесконечные (в первых - конечное число стратегий).

Наибольшее распространение в технических приложениях имеют парные стратегические бескоалиционные конечные некооперативные игры. Модель проблемной ситуации в этом случае имеет вид:

< U, V, W1, W2, R1, R2 >,

где

U - множество стратегий оперирующей стороны (конструктора);

V - множество стратегий оппонирующей стороны (технолог и природа);

W1 и W2 - показатели качества игроков;

R1 и R2 - системы предпочтения игроков.

Системы предпочтения игроков, в свою очередь, основываются на двух ведущих принципах рационального поведения: принципе наибольшего гарантированного результата и принципе равновесия.

Первый основан на том, что рациональным выбором одного из игроков должен считаться такой, при котором он рассчитывает на самую неблагоприятную для него реакцию со стороны другого игрока.

Второй принцип гласит, что рациональным выбором любого игрока считается такая стратегия u$ (или v$), для которой ситуация (u$, v$) обоюдовыгодна: любое отклонение от данной ситуации игры не является выгодным ни для одного из игроков.

Решается парная матричная игра (проектируемое изделие - меры и средства противодействия) с нулевой суммой (выигрыш одной стороны равен проигрышу другой) на основе рассмотрения платежной матрицы, которая представляет собой совокупность значений U и V (пара стратегий (u,v) U x V называется ситуацией игры) а также выигрышей Wij при парном сочетании всевозможных стратегий сторон.

Решение парной матричной игры может быть в чистых стратегиях, когда для каждой из сторон может быть определена единственная оптимальная стратегия, отклонение от которой невыгодно обоим игрокам. Если выгодно использовать несколько стратегий с определенной частотой их чередования, то решение находится в смешанных стратегиях.

Основные особенности использования методов теории заключаются в следующем. В качестве возможных стратегий со стороны проектируемой системы рассматриваются возможные варианты ее строения, из которых следует выбрать наиболее рациональный. В качестве стратегий противника рассматриваются возможные варианты его противодействия, стратегии их применения.

Необходимо отметить, что при рассмотрении игр с использованием адаптивной системы число ее стратегий может быть существенно расширено благодаря реализации "гибких" конструкторских решений. Анализ игровых ситуаций в этом случае может быть направлен не только на выбор рационального варианта проектируемого изделия, но и на определение алгоритмов рационального применения системы в конфликтной ситуации.

Другая особенность применения методов теории игр заключается в выборе решений, получаемых на основе анализа конфликтной ситуации. В теории игр доказывается теорема о том, что оптимальная стратегия для каждого из игроков является оптимальной и для другого. Так, если решение игры получено в чистых стратегиях (имеется седловая точка), то выбор решения однозначен. Например, если для парной антагонистической игры 3x4 составить матрицу, где элементами uij будут выигрыши (проигрыши) игроков, то седловая точка находится на пересечении максимина строк и минимакса столбцов

Стратегии

Стратегии B

Min
A 1 2 3 4 строк
1 8 2 9 5 2
2 6 5 7 18 5
3 7 3 -4 10 -4
max столбцов 8 5 9 18  

Оптимальными стратегиями будут для A - 2, для B - 2. Цена игры равна 5. Отметим, что в случае наличия седловой точки ни один из игроков не может улучшить стратегию и стратегии называются чистыми. Отметим, что игра с чистыми стратегиями может существовать только при наличии полной информации о действиях противника.

Если же решение игры получено в смешанных стратегиях, то это эквивалентно созданию множества вариантов проектируемого компонента и использованию их с оптимальными частотам, соответствующими оптимальной смешанной стратегии. В случаях, когда не имеется полной информации о действиях противника, вводятся вероятности применения той или иной стратегии в виде векторов

P<n>=<p1, p2, ..., pn> - для игрока A, где ;

Q<m>=<q1, q2, ..., qn> - для игрока B, где .

При этом игрок A выбирает стратегию в соответствии с принципом максимина по выражению:

,

а игра B по принципу минимакса

.

Рассмотрим пример: пусть рассматривается принятие решения в игре 2x2, где игрок A знает вероятность стратегии 1, то есть p1, тогда очевидно вероятность стратегии 2 будет 1-p, соответственно стратегии игрока B будут q1 и 1-q1. Платежная матрица будет иметь вид:

    B  
    q1 1-q1
A p1 a11 a12
  1-p1 a21 a22

На основании матрицы и приведенных выше выражений составляется таблица:

Чистые стратегии игрока B Ожидаемые выигрыши игрока A
1 (a11-a21)p1 + a21
2 (a12-a22)p1 + a22

Из таблицы видно, что ожидаемый выигрыш игрока A линейно зависит от вероятности p1 (в данном случае задача может быть решена графоаналитически). Тогда смешанная стратегия игрока А будет иметь вид

<p*1, p*2>,

то есть игроку A выгодно применять стратегию 1 с частотой (вероятностью) - p1, а стратегию 2 с частотой p2.

Очевидно, что разработка нескольких вариантов изделия сопряжена с большими затратами, не всегда реализуема и затрудняет использование системы. Поэтому при получении решения в смешанных стратегиях рекомендуются следующие случаи принятия окончательного решения:

· для дальнейшего проектирования выбирается тот вариант, который гарантирует максимальное качество (выбор по максиминной стратегии аналогично критерию Вальда);

· выбирается тот вариант, который в смешанной стратегии должен использоваться с максимальной вероятностью;

· реализуется несколько вариантов изделия с частотами, соответствующими смешанной стратегии (создание адаптивно-модульных конструкций).

Важное значение в задачах исследования качества адаптивных систем имеет не только решение игры, но и анализ платежной матрицы. Это особенно важно в тех случаях, когда решение в смешанных стратегиях не реализуется. Этот анализ может проводиться на основе: оценки возможных потерь эффективности в случае реализации чистой стратегии; определения дополнительных затрат на их компенсацию с помощью "гибких" конструкторских решений; оценки достоверности рассмотренных стратегий противодействия; определения возможности реализации компромиссных вариантов и т.д.

Для анализа конфликтной ситуации требуется на основе математической модели операции построить платежную матрицу [Wmn] =[Wij], где Wij характеризует качество изделия при выборе i-го варианта проектируемого изделия и при j-м варианте противодействия противника.

Решение может быть получено в чистых стратегиях, когда есть седловая точка. Условие седловой точки имеет вид

, (1.21)

где левая часть выражения - нижняя цена игры, правая - верхняя цена игры.

Если условие (1.8) не выполняется, то седловая точка отсутствует и требуется реализация смешанной стратегии.

Решение в смешанных стратегиях состоит в реализации чистых стратегий с различными вероятностями, задаваемыми распределением:

для проектируемого изделия в виде вектора-столбца

G = {gi}, где i = 1,2 ...m; ;

для противодействия в виде вектора-строки

F = {fj}, где j = 1,2 ...n; ,

где

gi - вероятность выбора стратегии ui;

fj - вероятность выбора стратегии vj.

Платежную функцию запишем в следующем виде:

(1.22)

где индексом "т" обозначена процедура транспонирования.

Платежная функция W(G,F) всегда имеет седловую точку, т.е. всегда существует решение матричной игры. Это утверждение соответствует основной теореме теории матричных игр: каждая матричная игра с нулевой суммой имеет, по крайней мере, одно решение в чистых или смешанных стратегиях.

Последовательность решения игры следующая:

1. Анализируется платежная матрица на предмет исключения заведомо невыгодных и дублирующих стратегий.

1. Проверяется наличие седловой точки по условию (1.21).

2. Если решение в чистых стратегиях отсутствует, то ищется решение в смешанных стратегиях с помощью методов линейного программирования или методом Монте-Карло.

Пример 1.4. Обоснование стратегии эксплуатации

Предположим, что техническая система (агрегат) состоит из 5 блоков, отказ одного из которых ведет к отказу всей системы. Для предупреждения простоя системы можно провести перед началом ее работы проверку и замену неисправного блока. Если проверен не тот блок, то система простаивает, что приводит к убытку Ri (в таблице), который существенно превышает расходы на профилактику и замену (т.е. Rij = 0). Требуется выбрать оптимальную стратегию из условия минимума убытка.

Пусть матрица расходов в зависимости от стратегий имеет вид:

Отказ блока (стратегии природы)

Проверка   1 2 3 4 5 max строки
и 1 8 2 9 5 6 9
замена 2 6 5 17 18 7 18
(стра- 3 7 3 14 10 8 14
тегии 4 4 6 16 9 19 19
эксплуа- 5 12 4 15 8 10 15
тации) min столбца 6 2 9 5 6  

Ответ: Имеется седловая точка - необходимо во всех случаях проверять первый блок.

Пример 1.5. Зимняя эксплуатация лесовозной дороги

Предположим, что при заготовке леса зимой стоит выбор делать или не делать предварительную расчистку дороги. При этом известны предполагаемые высоты снежного покрова и матрица доходов при применении той или иной стратегии. В данном случае можно реализовать себя как игрока A, а природу, как игроке B:

B

    20 мм 40 мм 60 мм 100 мм
A не делать 2 2 3 -1
  делать 4 3 2 6

Решение: Имеем игру 2x4. Эта игра не имеет седловой точки. Ожидаемые выигрыши игрока A, соответствующие чистым стратегиям B представлены в таблице

Чистые стратегии B Ожидаемые выигрыши A
1 2 3 4 -2x1 + 4 -x1 +3 x1 + 2 -7x1 + 6

Далее оптимальное решение - максимин находится графоаналитическим методом. Значение игры в данном случае равно 5/2.

 

 

Литература :

1. Андреев В.Н., Герасимов Ю.Ю. Принятие оптимальных решений: Теория и применение в лесном деле. Йоэнсуу: Из-во ун-та Йоэнсуу, 1999. 200 с.

2. Беллман Р., Калаба Р. Динамическое программирование и современная теория управления. М.: Наука, 1969. 120 с.

3. Вентцель Е.С. Элементы динамического программирования. М.: Наука, 1964. 176 с.

4. Вентцель Е.С. Исследование операций: задачи, принципы, методология. М.: Наука, 1988.

5. Юдин Д.Б. Задачи и методы стохастического программирования. М.: Сов. радио, 1979. 392 с .

6. Davis L.S., Johnson K.N. Forest management. New York: McGraw-Hill Book Company, 1987. 790 p.

7. Моисеев Н.Н., Математические методы системного анализа М. Наука 1981 487 с.

8. http://www.petrsu.ru/Faculties/Forest/courses/decision/decis_a.htm

 

Дата: 2019-04-23, просмотров: 276.