Як видно з результатів, описаних вище, у легованих цинком структурах Si-SiO2 спостерігається покращення суцільності плівок SiO2. Це пов’язане з заповненням легуючою домішкою незавершених зв’язків дислокацій приповерхневої області кремнієвої пластини і зниження, за рахунок цього, рухливості дислокацій. Оскільки одним з механізмів утворення пор є деформаційне локальне руйнування плівки, щільно з’єднаної з підкладкою, за рахунок напружень, які перевищують критичні, під час зміщення сусідніх атомних площин при русі дислокацій. Вказане легування при оптимальних концентраціях повинне приводити до покращення структурної досконалості межі розділу, зменшення рухливості дислокацій і, відповідно, пористості плівок SiO2 [19].
Можна сподіватися, що легування приповерхневої області кремнію приводитиме і до покращення електрофізичних характеристик межі розділу, що буде проявитися перш за все на таких параметрах, як густина поверхневих станів та генераційно-рекомбінаційний час життя.
Розрахунок приводили за результатами вимірювання вольт-фарадних характеристик за методикою, описаною в § 2.4
Результати дослідження параметрів ОПЗ легованих цинком структур приведені в таблиці.
Таблиця. 3
Концентрація домішки, % | 0 | 0.0005 | 0.001 | 0.0025 |
Густина поверхневих станів, Dit, еB/кв.см. | 5.7´1011 | 5.7´1011 | 5.0´1011 | 5.2´1011 |
Час життя, tg, 10-6 c | 45 | 40 | 86 | 55 |
Як видно з таблиці, введення домішки цинку приводить до підвищення структурної досконалості приповерхневої області кремнію, що виявляється в зменшенні з ростом рівня легування густини поверхневих станів та підвищенні часу життя нерівноважних носіїв заряду, причому вказане покращення спостерігається лише при повному рівні легування, який має свій оптимальний діапазон. Високолеговані структури порівняно з контрольними характеризувалися гіршими показниками якості. Це пояснюється тим, що при концентрації домішки 3´10-3% і вище, атоми цинку будуть входити не лише в ядро дислокацій, а й легувати поверхню кремнію і цілому, тобто створювати точкові дефекти в кристалічній гратці, а при високому рівні – і дислокації невідповідності [10]. Наявність дефектів структури приводить до появи додаткових рекомбінаційних центрів і енергетичних станів, пов’язаних з ними, що знижує рухливість носіїв заряду, їх час життя і підвищує концентрацію енергетичних поверхневих станів, тобто в цілому призводить до погіршення параметрів структур.
Симптоматично, що структури з оптимальним рівнем легування після опромінення і наступного відпалу характеризувалися кращими значеннями параметрів межі розділу порівняно з контрольними, тобто мали нижчу радіаційну чутливість. Це пояснюється зниженням рівня механічних напружень приповерхневої області за рахунок легування та зменшення її дефектності. Як відомо [17], підвищення структурної досконалості кристалічної гратки в області межі розділу повинно приводити до покращення електрофізичних характеристик системи Si-SiO2.
На рис.3.4.1 приведені концентраційні залежності часу життя неосновних носіїв заряду 1/tg = f(С). У діапазоні концентрацій, близьких до 0.002% спостерігається чітко виражений мінімум, характерний як для опромінених, так і для неопромінених структур. Причому величина часу життя неосновних носіїв заряду при оптимальному рівні легування в області мінімуму кращі, ніж у контрольних зразках, що піддавались і не піддавались радіаційно-термічній обробці.
Зниження часу життя при рівнях легування, що перевищують оптимальні, найвірогідніше зумовлене структурним розпорядкуванням приповерхневої області під впливом високої концентрації легуючої домішки, утворенням складних комплексів, що містять цинк та самочинно не розпадаються під час відпалу.
Залежність величини, оберненої до часу життя, від концентрації домішки, а не часу життя, приводиться тому, що 1/tg пропорційна густині генераційно-рекомбінаційних центрів і виражає зміну рівня дефектності приповерхневої області кремнію.
Порівняно з нелегованими структурами, оптимальне легування приводить до швидшого відновлення густини поверхневих станів після радіаційно-термічної обробки, що відображено на рис.3.4.1. Причому, як видно з малюнка, термічна обробка після опромінення приводить до менших значень густини поверхневих станів приповерхневої області кремнію, порівняльно з вихідними структурами.
Характерно, що оптимальні значення параметрів структур спостерігаються при тих же значеннях концентрацій домішки, при яких плівки SiO2 характеризуються найкращою суцільністю.
Таким чином, встановлений нами діапазон оптимальних концентрацій гетеруючої домішки буде приводити не тільки до зниження густини структурних дефектів плівок SiO2, але й до покращення електрофізичних характеристик м6ежі розділу діелектрика з монокристалічною підкладкою, що важливо для подальшого практичного використання.
Рис. 3.4,1. Залежності впливу опромінення та наступного вщпалу на 1/Тд: 1 - вихідні; 2 - після опромінення.
Рис. 3.4.2. Концентраційна залежність відносної зміни густини поверхневих станів після радіаційно-термічної обробки.
Висновки
1. Вивчені механізми попроутвореня і плівках термічного диоксиду кремнію;
2. Показано, що переважаюча кількість пор утворюється вздовж ліній ковзання внаслідок напружень плівок, викликаних рухом дислокацій монокристалічнолї підкладки.
3. Запропоновано механізм гетерування дуфектів шляхом гальмквання руху дислокацій атомами цинку;
4. Визначений діапазон оптимальних концентрацій домішки у газовій фазі при якій плівки характеризуються мінімальними значеннями пористості і оптимальними електрофізичними параметрами.
ЕКОНОМІЧНА ЧАСТИНА
У зв’язку з особливостями науково-дослідних розробок для їх ефективного здійснення, координацій робіт, оперативного управління ходом робіт, передбачене сіткове планування та керування.
Планування науково-дослідної роботи (НДР).
В розрахунково - пояснювальній записці до дипломної роботи планування НДР здійснюється в наступній послідовності :
1. Розбиття комплексу робіт на окремі етапи.
2. Виявлення та опис всіх подій та робіт.
3. Визначення часу виконання робіт.
4. Побудова сіткового графіка.
5. Розрахунок параметрів сіткового графіка.
Дата: 2019-05-29, просмотров: 205.