Поглинання мінеральних елементів - саморегульований процес. В основі його лежить здатність рослин підтримувати збалансованість рівнозначних потоків іонів мінеральних солей, що забезпечує необхідний для життєдіяльності рівень нагромадження мінеральних елементів. Будь-яке відхилення від цього рівня викликає ряд процесів, спрямованих на відновлення втраченої рівноваги, тобто на включення гомеостатичних механізмів. При цьому можливі не тільки повернення до вихідного рівня нагромадження мінеральних елементів у клітках, але і перехід (відповідно до їхнього змісту в зовнішнім середовищі) на новий рівень, що лежить у межах фізіологічних норм відхилень.
Під іонним гомеостазом клітини варто розуміти систему, що забезпечує підтримку і розподіл внутрішньоклітинних концентрацій і активностей іонів і води. Підтримка іонного гомеостазу в клітинах рослин може досягатися різними шляхами. Один зі шляхів регуляції іонного гомеостазу рослин полягає в тому, що поглинання одного іона може відбуватися за рахунок виділення іншого. Особливо у великих розмірах таке заміщення може відбуватися в галофітів. У них повнота заміщення поживних іонів баластовими (Nа +,Cl-) досягає 70 %.
Іншим шляхом регуляції іонного гомеостазу рослин є посилення видільної діяльності кореневої системи, сольових залоз. А. М.Смирнов (1970), вивчаючи ріст і метаболізм ізольованих коренів у стерильній культурі, установив, що в процесі росту в ізольованій культурі корені виділяють у середовище крім органічних сполук катіони й аніони.
Третій шлях підтримки іонного гомеостазу - це перерозподіл вмісту іонів в органах рослин. Надлишок іонів солей може виділятися в старі листки, затримується в коренях [8].
Оскільки для нормального функціонування клітин рослин важлива не тільки концентрація тих чи інших іонів солей, але і їх співвідношення, то в клітині відбуваються процеси, що забезпечують необхідне співвідношення різнозарядних іонів. Тут набирає сили закон сталості відношення суми катіонів до суми аніонів.
Рослина поглинає катіони в еквівалентно більшій кількості, ніж аніони, тому одержана частка небагато більша 1.
Прикладом цього можуть бути численні дослідження і кількісний аналіз поживних речовин, що витрачаються деревом на створення деревини, листків і плодів. Підсумувавши показники виносу, установлені для різних умов оброблення плодових культур, можна одержати наступні середні значення виносу чистих поживних елементів (у кг/га): азот - 76; фосфор - 33; калій - 110; кальцій - 70.
Якщо взяти за основу вищенаведені середні значення виносу поживних речовин, то співвідношення N: Р : К : Са буде відповідати 1:0,4:1,4:0,9. Навіть при однобічному внесенні мінеральних речовин його величина майже не змінюється, тому що інтенсивне поглинання калію потім буде вирівняно, наприклад, незначним поглинанням магнію і кальцію, що є антагоністами, чи сильне поглинання NО3- буде урівноважено не менш інтенсивним поглинанням катіонів унаслідок їх синергізму. Посилений синтез органічних кислот є одним з діючих способів зв'язування катіонів і нейтралізації сполук основного характеру. Велику роль в утриманні кислотно-лужної рівноваги в клітинах відіграють органічні полікатіони і поліаніони (амінокислоти, нуклеїнові кислоти, фосфоліпіди. полісахариди).
Основним, і найчастіше єдиним, джерелом мінеральних речовин для рослин служить ґрунт.
Вивчення питання транспорту елементів є одним з основних у мінеральному живленні. Це визначено наступним: по-перше, сутність живлення рослин полягає в поглинанні і включенні в метаболізм мінеральних елементів у результаті обміну між організмом і середовищем.
По-друге, з'ясування питань, пов'язаних із транспортом, наближає нас до керування продуктивністю сільськогосподарських рослин на більш високій теоретичній основі. Знаючи умови поглинання і пересування того чи іншого елемента, можна кількісно змінити вміст його в тканинах [12].
По-третє, вивчення транспорту елементів сполучено із з'ясуванням властивостей і функцій клітинної оболонки, мембранних утворень, зв'язку між клітками і тканинами.
В остаточному підсумку іонний транспорт накладає відбиток на всі основні групи явищ: перетворення речовин, енергії, передачу інформації.
Тривалий час серед фізіологів рослин була розповсюджена думка, відповідно до якої елементи мінерального живлення надходять у рослини разом з водою на основі осмотичних і дифузійних закономірностей. Вважалося, що речовини поглинаються рослиною в тих же кількостях і співвідношеннях, у яких вони знаходяться в ґрунтовому розчині. Було встановлено, що процеси поглинання води й елементів мінерального живлення в широких межах незалежні одне від одного. Вода необхідна як розчинник речовин, у розчиненому стані окремі елементи пересуваються по рослині, але поглинання речовин рослиною відбувається вибірково, що може цілком змінювати співвідношення поглинених речовин у порівнянні з тими, які є в зовнішньому розчині. Це дуже важливе принципове питання фізіології кореневого живлення рослин.
Експерименти цілком підтверджують теоретичний висновок про незалежність процесів поглинання солей і води кореневими системами. Д А. Сабінін (1955) [8] приводить три ряди фактів, що є підставою для твердження про незалежності цих процесів.
По-перше, не існує прямого зв'язку між кількістю транспірованої рослинами води і кількістю солей, поглинених з розчину, що оточує кореневі системи. Установлено, що навіть при слабкій транспірації (11 відносних одиниць) відбувалося інтенсивне поглинання солей (50 відносних одиниць). Відзначено, що при більшій транспірації спостерігається деяке посилення поглинання солей, але воно є дуже невеликим, що ледь виходить за межі похибки методу обліку поглинання солей.
Другий ряд факторів, що свідчать про відсутність зв'язку між поглинанням води і розчинених речовин із середовища, що оточує корені, це дані про одночасний рух іонів солей і води через кореневі системи в протилежних напрямках. При розгляді видільної функції коренів відзначалося, що з кореневих систем серед інших речовин виділяються в зовнішнє середовище різні іони. Наприклад, при рН < 6,0 з коренів злаків, вирощених у водяній культурі, виділяється кальцій. При визначених значеннях рН на світлі в умовах інтенсивної транспірації відбувається виділення сульфат- і фосфат-іонів.
Третій ряд факторів, що обґрунтовують представлення про незалежність поглинання іонів коренями від поглинання води, складають результати досвідів по засвоєнню кореневими системами іонів із ґрунту.
Завдяки роботам ґрунтознавців і фізіологів стало відомо, що живильні речовини з ґрунту в корені надходять переважно у формі іонів, чи присутніх у розчині, чи адсорбованих частками. Поглинання іонів здійснює головним чином молода (зростаюча) частина коренів. Існує кілька шляхів, що забезпечують сталість контактування коренів з елементами харчування. По-перше, це досягається завдяки активному пошуку необхідних іонів самою рослиною: збільшенню довжини коренів і освоєнню нової товщі ґрунту. Так здійснюється перехоплення елементів харчування. По-друге, іони надходять у корені з масовим струмом, що виникає в ґрунті в результаті транспірації води рослинами. По-третє, іони пересуваються з ґрунту убік коренів дифузно по градієнті концентрації [8].
Пайова участь кожного з перерахованих шляхів доставки іонів до коренів у залежності від умов може істотно мінятися. Так, доставка багатьох елементів-біофілів до коренів здійснюється переважно масовим потоком. Однак це можливо тільки при їхньому значному змісті в ґрунтовому розчині. Якщо ґрунтовий розчин бідний елементами харчування, то відбувається обмін іонами між клітками епідермісу і частками ґрунту. Обмін може чи відбуватися безпосередньо між поверхнями чи клітки частки, чи в результаті переходу іонів у ґрунтовий розчин.
Відповідно до сучасних представлень, на першому етапі поглинання елементів мінерального харчування значну роль грає їхня адсорбція на поверхні кліток і тканин. Перша протікає за рахунок електричних сил адсорбуючої поверхні, друга - за рахунок взаємодії з зарядами амфотерних з'єднань протоплазми. Торкаючись питання про значення адсорбції в процесах харчування рослин, слід зазначити роботи Д А. Сабініна (1940), И. И. Колосова (1962) [12]. Автори вказували, що розгляд процесу надходження речовин у клітину повинен починатися з ефекту взаємодії оболонок рослинних клітин з іонами зовнішнього середовища, і досить чітко сформулювали уявлення про клітинну стінку як про іонообмінну фазу.
Значна інформація про роль оболонки в первинному поглинанні іонів була отримана в роботах, присвячених питанню локалізації так званого вільного простору. Д Б. Вахмістров (1969) довів, що вільний простір локалізований у клітинній оболонці і не поширюється на цитоплазму. Цей висновок прийшов на зміну раніше пануючим уявленням, згідно яким основним місцем адсорбції іонів була протоплазма.
Ряд досвідів, виконаних на ізольованих клітинних оболонках позбавлених слідів цитоплазми, показав їх високу адсорбційну ємність.
Таким чином, сорбційні властивості клітинної оболонки повинні значно впливати на процес поглинання іонів рослинною клітиною. Припускають, зокрема, що в результаті адсорбції при дуже низьких іонних концентраціях відбувається значне концентрування речовин на фазовій границі клітина/зовнішній розчин. Показано, що клітинна стінка, як перший бар'єр на шляху проникнення елементів мінерального живлення, є слабкокисла катіонообмінна мембрана, матриця якої утворена целюлозою і несе певну кількість карбоксильних груп, що зв'язують катіони. Притягування до клітинної стінки позитивно заряджених часток збільшує концентрацію розчинних речовин, що приводить до підтримки в клітинній стінці більш високого осмотичного тиску, ніж у розчині.
Ключову роль у здійсненні контролю за рухом іонів із клітини в клітину відіграє плазмалема. Для елементів мінерального живлення вона служить просто бар'єром, що обмежує їх рух по градієнту концентрацій. Однак для деяких іонів роль плазмалеми більш специфічна. У цих випадках у мембранах включаються механізми, що полегшують рух іонів через мембрану по градієнту їх концентрацій. Це відбувається тоді, коли клітини активно накопичують які-небудь іони, концентрація яких повинна підтримуватися на низькому рівні. При такому активному транспорті іонів через мембрану витрачається енергія, накопичена у формі АТФ.
Отже, по своєму відношенню до енергетичних процесів транспортні системи рослин поділяють на пасивні й активні механізми. Пасивні механізми приводять лише до прискорення вирівнювання концентрації речовин у зовнішнім середовищі і у внутрішньому об`ємі клітин. Вважається, що рушійною силою такого процесу є концентраційний градієнт, і тому передбачається, що перенос, що є власне кажучи полегшеною дифузією, відбувається без додаткової витрати енергії.
Дата: 2019-05-28, просмотров: 229.