Гельпроникающая (молекулярно-ситовая) хроматография
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Гельпроникающая хроматография (ГПХ) представляет собой метод разделения молекул, основанный на различии из размеров.

В качестве НФ в ГПХ используют частицы, имеющие определенные размеры пор. Это различного рода гели (мягкие, полужесткие и жесткие). В качестве ПФ служат водные или органические элюенты. Принцип разделения молекул в ГПХ состоит в том, что молекулы анализируемых веществ распределены между неподвижным растворителем в порах сорбента и растворителем, протекающим через слой НФ. Молекулы, которые имеют размеры, позволяющие им проникать в поры сорбента при движении вдоль колонки, часть времени теряют на пребывание в порах. Молекулы, имеющие размеры, превышающие размеры пор, не проникают в сорбент и вымываются из колонки со скоростью движения элюента. Молекулы, которые проникают в поры всех размеров, движутся наиболее медленно. Снижение скорости движения веществ вдоль колонки тем больше, чем в большее число пор способны диффундировать распределяемые частицы.

Таким образом, при помощи ГПХ можно разделить смеси веществ в зависимости от размеров их молекул. Выход веществ из колонки происходит в порядке уменьшения их молекулярной массы. Так можно разделить полипептиды, белки и другие макромолекулы.

Гельпроникающая хроматография на колонке используется для очистки пестицидов, а также жирорастворимых витаминов перед их определением методом ВЖХ.

Электрофорез

Метод анализа, основанный на способности заряженных частиц к передвижению во внешнем электрическом поле называют электрофорезом (от “электро” и греческого phoresis — перенесение).

Электролиз относится к методам разделения без превращения веществ, на основе заряда частиц. По технике выполнения метод аналогичен хроматографии, поэтому и рассматривается в этой главе.

 

Рис 2.7.1 Схема прибора для электрофореза

 

Нередко под электрофорезом понимают перемещение коллоидных частиц или макромолекул, в отличие от иовофореза - перемещения неорганических ионов малого размера.

Передвижение частиц при электрофорезе зависит от ряда факторов, основными из которых являются: напряженность электрического поля; величина электрического заряда; скорость и размер частицы; вязкость, рН и температура среды, а также продолжительность электрофореза.

Электрофорез можно проводить как в свободном растворе (фронтальный электрофорез), так и на носителях (зональный электрофорез). Последний вариант предпочтительнее, т.к. носители способствуют стабилизации электрофоретических зон. В качестве носителей используют: фильтровальную бумагу, силикагель, крахмал, оксид алюминия, поливинилхлорид, агаровый и полиакриламидный гели и др.

Электрофоретическое разделение осуществляют на бумаге, в тонком слое сорбента, колонке или в блоке (который часто формируют из суспензии крахмала в подходящем электролите).

Аппаратура для электрофореза выполняется по единой схеме: источник тока, камера для электрофореза, два электрода, соединяющих камеру с источником тока и приспособление для сбора и идентификации разделенных веществ (последний блок в некоторых случаях отсутствует). Для электрофореза используют как готовые наборы аппаратуры (универсальный прибор для иммуноэлектрофореза и электрофореза белков на бумаге и крахмале, набор для электрофореза в полиакриламидном геле венгерской фирмы Реанал), так и наборы, составляемые экспериментатором из отдельных приборов.

На рис. 2.7.1 представлена схема прибора для электрофореза на бумаге. Электрофоретическая камера состоит из двух кювет, в которые помещают графитовые электроды и раствор проводящей жидкости (буферный раствор). Выше кювет находится подставка для носителя бумаги. Смесь веществ, подлежащих разделению, наносят на пропитанную проводящей жидкостью бумагу. Бумагу подсушивают, помещают на подставку, концы погружают в кюветы, затем камеру плотно закрывают крышкой. После пропитывания бумаги проводящей жидкостью подключают электрический ток. По окончании электрофореза бумагу подсушивают. Качественную и количественную оценку осуществляют, применяя методы, используемые в бумажной хроматографии, например, проявление белков с помощью красителей, количественную оценку - методом денситометрии.

Важной областью применения электрофореза является анализ белков сыворотки крови, аминокислот гидролизатов белков, нуклеиновых кислот и т.п. В кислотном буферном растворе аминокислота находится в виде катиона NHз+......COOH, который будет перемещаться к катоду, в то время как в щелочном буфере аминокислота превращается в анион NH2....COO-, и будет двигаться к аноду. В изоэлектрической точке аминокислота находится в растворе в виде биполярного иона NH3+......COO- и не будет передвигаться в электрическом поле.

 

2.8 Газовая хроматография

 

В газовой хроматографии (ГХ) в качестве ПФ используют инертный газ (азот, гелий, водород), называемый газом-носителем. Пробу подают в виде паров, неподвижной фазой служит или твердое вещество - сорбент (газо-адсорбционная хроматография) или высококипящая жидкость, нанесенная тонким слоем на твердый носитель (газожидкостная хроматография). Рассмотрим вариант газожидкостной хроматографии (ГЖХ). В качестве носителя используют кизельгур (диатомит) - разновидность гидратированного силикагеля, часто его обрабатывают реагентами, которые переводят группы Si-OH в группы Si-О-Si(CH3)3, что повышает инертность носителя по отношению к растворителям. Таковыми являются, например, носители “хромосорб W” и “газохромQ”. Кроме того, используют стеклянные микрошарики, тефлон и другие материалы.

Неподвижную жидкую фазу наносят на твердый носитель. Эффективность разделения в газожидкостной хроматографии зависит главным образом от правильности выбора жидкой фазы. При этом полезным оказалось старое правило: “подобное растворяется в подобном”. В соответствии с этим правилом для разделения смеси двух веществ выбирают жидкую фазу, близкую по химической природе одному из компонентов. Подготовленный носитель помещают в спиральные колонки, имеющие диаметр 2 - 6 мм и длину до 20 м (набивные колонки). С 1957 года стали применять предложенные Голеем капиллярные колонки, имеющие диаметр 0,2 - 0,3 мм и длину в несколько десятков метров. В случае капиллярных колонок жидкая фаза наносится непосредственно на стенку этого капилляра, которая выполняет роль носителя. Применение капиллярных колонок способствует повышению чувствительности и эффективности разделения многокомпонентных смесей.

 

Рис.2.8.1 Блок-схема газового хроматографа

 

Анализ методом ГХ выполняют на газовом хроматографе, принципиальная схема которого приведена на рис. 2.8.1.

Газ - носитель из баллона 1 с постоянной скоростью пропускают через хроматографическую систему. Пробу вводят микрошприцем в дозатор 2, который нагрет до температуры, необходимой для полного испарения хроматографируемого вещества. Пары анализируемой смеси захватываются потоком газа - носителя и поступают в хроматографическую колонку, температура которой поддерживается на требуемом для проведения анализа уровне (она может быть неизменной, или по необходимости меняться в заданном режиме). В колонке анализируемая смесь делится на компоненты, которые поочередно поступают в детектор. Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором.

В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, которые обладают высокой чувствительностью и универсальностью. К таким относятся: катарометр (детектор по теплопроводности); пламенно-ионизационный детектор (ПИД), в котором водородное пламя служит источником ионизации органического соединения; детектор электронного захвата (ЭЗД); термоионный детектор (ТИД), который обладает высокой селективностью к органическим веществам, содержащим фосфор, азот и серу. Интерес к этому детектору заметно возрос в связи с заменой хлорсодержащих пестицидов на фосфорсодержащие ядохимикаты, используемые в сельском хозяйстве и попадающие затем в пищевые продукты.

Катарометр позволяет определить концентрации веществ в пределах 0,1 - 0,01%, ПИД - 10-3 - 10-5%”; ЭЗД - 10-6 - 10-10%. Современные детекторы позволяют определять даже пикограммы (10-12 г) вещества в пробе.

Качественный и количественный анализ в методе ГХ проводят так же, как и в ВЖХ.

Газожидкостная хроматография находит широкое применение для разделения, идентификации и количественного определения сложных многокомпонентных систем, таких как нефть, биологические жидкости, пищевые продукты, парфюмерно-косметические изделия и многие другие. Метод отличается высокой чувствительностью, экспрессностью; для анализа не требуется большого количества исследуемого образца.

Среди разнообразных хроматографических методов газовая и высокоэффективная жидкостная хроматография являются самыми перспективными для решения сложных задач в практике пищевого анализа.

Так, в число задач, которые могут быть разрешены в пищевом анализе с помощью этих методов, входят:

- определение химической природы веществ, обуславливающих характерный аромат свежих продуктов;

- контроль за состоянием продуктов в процессе обработки и хранения;

- объективная оценка показателей, характеризующих качество исходного сырья и готовых изделий из него;

- установление и устранение причин, вызывающих нежелательные изменения продуктов в процессе их изготовления;

- установление факта фальсификации продукта и другие.

 

Рис.2.8.2 Хроматограмма афлотоксинов в молоке. Регистрация с помощью флуометрического детектора (возбуждающая длина волны 365 нм, возбужденная 455 нм).

 

Методами ГХ и ВЖХ идентифицируют и определяют летучие вещества, участвующие в формировании вкуса и аромата многих пищевых продуктов или отвечающих за их порчу. Например, определяют летучие жирные кислоты, характерные для качественного мяса; или кислоты, образующиеся при изменении нормального процесса брожения квашеной капусты и обуславливающие посторонние оттенки ее запаха. Методы используются для определения никотина, нитрозамина (в рыбе и копченостях); пищевых добавок (красители, консерванты, антиокислители); загрязнителей окружающей среды (пестициды, афлатоксины, остатки лекарственных препаратов, витамины) и др. На рис. 2.8.2 представлена хроматограмма разделения афлатоксинов в молоке.

Весьма ценными являются методы ГХ и ВЖХ в установлении фактов фальсификации потребительских товаров. Так, желтый краситель в макаронных изделиях может создать впечатление о высокой стоимости продукта. Наличие такого красителя можно подтвердить методом ВЖХ. Определение антоцианов и гликозидов, отвечающих за цвет вина, позволяет выявить натуральность вина. Подделки коньяка также можно распознать с помощью ГХ.

Методом ВЖХ идентифицируют и определяют небелковый азот, например, мочевину, которую добавляют при фальсификации белковых продуктов с целью увеличения азотистых веществ. Обнаружение аминокислоты оксипролина, присутствующей, главным образом, в белках соединительной ткани, т.е. в дешевом сырье, позволяет выявить факт замены им полноценного белка мяса. Жиры, определяемые по триглицеридному составу методом ГХ, могут дать информацию о количестве жира и добавках постороннего жира. По определению жирно-кислотного состава можно сделать вывод о замене какао-масла гидрожиром в шоколаде и т.п.

Следует отметить, что в настоящее время некоторые виды хроматографии используют не как самостоятельные методы анализа, а как методы предварительного исследования или как методы подготовки пробы к последующему определению другими методами, в том числе хроматографическими.

Так, при определении аминокислот в гидролизате белков мяса или крови методом БХ, проводят предварительную очистку гидролизата на колонках с ионитами. Аналогично поступают при определении летучих оснований и свободных жирных кислот в мясе и рыбе.

Методом ТСХ устанавливают наличие в исследуемом образце хлорорганических пестицидов, количественное определение которых затем проводят методом ГЖХ.

 

Рис. 2.8.3 Сочетание газовой хроматографии с другими принципами анализа и включенной последовательно ЭВМ.

 

Особенно эффективным оказалось применение независимой аналитической идентификации и определения продуктов хроматографического разделения при сочетании ГХ и ВЖХ с другими методами исследования: инфракрасной спектроскопией и масс-спектрометрией. Методом масс-спектрометрии можно проводить непрерывный анализ компонентов смеси, причем для небольших количеств веществ. Такой комбинированный (гибридный) метод получил название хромато-масс-спектрометрии. Например, определение пестицидов, остатков лекарственных веществ (пенициллинов, сульфаниламидов и др.) проводят, используя комплекс: ГХ (или ВЖХ) - масс-спектрометрия. Возможно сочетание хроматографии с методами ядерного магнитного резонанса, пламенной (фотометрии, абсорбционной спектрометрии и др.).

Применение хроматографии

Применение хроматографии наряду с другими физико-химическими методами, а также их взаимное сочетание, является тенденцией в разработке методик исследования качества потребительских товаров.

 

Рис.2.9.1 Хроматограмма градуировочной смеси, полученная на хроматографе, оснащенном капиллярной колонкой HP-FFAP (США) 1 уксусный альдегид, 2 метиловый спирт уксусной кислоты, 3 этиловый эфир уксусной кислоты, 4 метиловый спирт, 5 этиловый спирт, 6 пропанол-1, 7 изобутиловый спирт, 8 – 6 бутанол-1, 9 изоамиловый спирт.

 

Методы хроматографии обладают большой аналитической емкостью, и, как уже было отмечено выше, находят самое широкое применение.

Дата: 2019-05-28, просмотров: 220.