Дифференциально-термический анализ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Измерительная часть приборов для термического анализа по методу ДТА состоит обычно из трех термопар (рис. 2). Одной из них (термопара №3) измеряется температура печи, а остальными двумя включенными навстречу друг другу термопарами при помощи высокочувствительного гальванометра измеряется разность температур между печью и пробой. Последняя помещается в одно из трех отверстий блока держателя пробы и в нее укладывается спай первой термопары. Спаи второй и третьей термопар, измеряющих температуру печи, окружают инертным веществом, не претерпевающим никаких изменений под влиянием тепла, но создающим условия теплопередачи, почти тождественные условиям, в которых находится исследуемое вещество.

 

Рис. 1.2.1 Дифференциальная схема термического анализа

 

Держатель пробы нагревается с помощью регулируемой электрической печи. При такой схеме, если температуру держателя равномерно увеличивать, температура, как пробы, так и инертного вещества равномерно повышается до тех пор, пока в исследуемом веществе не начнется химическая реакция или другое превращение с тепловым эффектом. С этого момента, в зависимости от того, является ли реакция экзотермической или эндотермической, начинается, соответственно, повышение или снижение температуры пробы. Таким образом, разность потенциалов между полюсами первой термопары останется неизменной или же начнет повышаться быстрыми темпами. Поскольку эта разность компенсироваться равномерно увеличивающимся напряжением второй термопары не будет, гальванометр даст показания, по знаку и величине соответствующие разности температур.

Если показания гальванометра снимают в зависимости от температуры, наблюдаемой по милливольтметру (например, через каждые 5 или 10 K), и полученные таким способом данные изображают графически, то получают кривые, подобные графику, представленному на рис. 1. По оси ординат отложена разность температур (пропорциональная отклонению гальванометра), наблюдаемая между пробой и инертным веществом. По оси абсцисс отложено время, которое пропорционально температуре в печи в том случае, если температура последней увеличивалась равномерно во времени. Прямая горизонтальная часть кривой и ее дополнительный отмеченный пунктирной линией участок являются основной линией, которая была бы получена, если бы в исследуемом веществе не произошло никакого термического превращения. Кривые ДТА условно строят так, что эндотермический максимум откладывают от основной линии вниз, а экзотермический максимум – вверх. Минимумом кривой считается наиболее приближенная к основной линии точка между двумя эндотермическими или экзотермическими процессами, плотно сопровождающими или перекрывающими друг друга. В том случае, если реакции сильно перекрывают друг друга, возможно, что на кривой минимум не проявится, а появится только точка перегиба. Термические превращения характеризуют как пиковыми температурными значениями (точка b на рис. 1), иными словами, температурой, при которой скорость процесса достигает максимального значения, так и температурами начала (точка а) и конца термического (точка с) процесса.

Кривые ДТА на практике регистрируются автоматически. Разностный сигнал с термопар подается на какое-либо регистрирующее устройство, фиксирующее его величину через определенный временной интервал. Градуировка термограммы производится, обычно, по температурной кривой, измеренной в инертном материале и зафиксированной на том же регистраторе. Описанный выше классический вариант аппарата для ДТА наряду с другими, более современными типами, широко применяется еще и сегодня, хотя правильность принципа измерения у него весьма сомнительна. Следует отметить, что пиковые значения температуры, измеряемые аппаратом данного типа, представляют собой не действительную температуру превращения, а только температуру инертного вещества в тот момент, когда скорость превращения в пробе достигает своего максимума. На указанную ошибку метода обратили внимание Берг, Смит и Баршед. Идея же измерения температуры в самом исследуемом материале долгое время оставалась нереализованной. С самого начала создания этого метода специалисты стремились использовать кривые ДТА для определения количественных соотношений. Количественные оценки кривых ДТА научно обосновывались исследователями Шпейлом, Беркелгаммером, Паском и Дэвисом, а попытки усовершенствования метода нашли отражение в работах Керра и Купа, Баршеда, Берга, Фельдварине, Клибурски и многих других. Вначале исследователи искали надежные зависимости между высотой пика кривой ДТА и содержанием искомого компонента в пробе. Основанием количественной оценки в настоящее время является площадь, ограниченная кривыми и основной линией. Такой метод количественной оценки является правильным, но весьма неточным и затруднительным. На практике оказывается, что количественная оценка кривых ДТА этим методом может производиться лишь с точностью, не превышающей 5...10%. Повысить точность количественного определения теплового эффекта можно увеличив точность определения разности температур между пробой и инертным веществом. На практике это достигается заменой термопар №1 и №2 (см. рис. 2) на блоки термопар, которые увеличивают сигнал на регистрирующем разность температур приборе и тем самым повышают точность ее определения. Развитие метода ДТА в направлении повышения точности коли-чественного определения тепловых эффектов привело к созданию нового метода исследования – дифференциальной сканирующей калориметрии (ДСК).

Термогравиметрия

 

Наряду с методом дифференциально-термического анализа веществ активно развивалась и вторая ветвь термического анализа – метод термогравиметрии. С помощью последнего можно с высокой степенью точности проследить за изменением массы пробы при повышении температуры.

Термогравиметрия – это развитие метода исследования, заключающегося в измерении изменения массы образцов при нагревании. Первоначальную схему метода можно представить следующим образом: пробу нагревали до определенной температуры, затем охлаждали и после охлаждения взвешивали с аналитической точностью. Процесс повторяли циклически, каждый раз увеличивая температуру. Если результаты взвешивания, относящиеся к отдельным температурным значениям, представить в координатах температура – масса образца и соединить полученные точки, то получится кривая, именуемая термогравиметрической (ТГ).

Описанный метод является исключительно длительным и неточным, но применяется и сегодня, например, при аналитическом определении потери массы при прокаливании вещества. Значительно быстрее и точнее проводить измерения с помощью термовесов, непрерывно регистрирующих изменение массы пробы.


 

Рис. 1.3.1 Термовесы

 

Принцип работы термовесов следующий. Пробу помещают в тигель (рис. 3), опирающийся на коромысло весов. Затем тигель нагревают в электрической печи так, чтобы его температура равномерно повышалась. Температура печи измеряется с помощью находящейся в ней термопары, к концам которой подключен милливольтметр, и время от времени (например, каждые 5...10 К) масса образца фиксируется.

Графически изображенные результаты измерения дают термогравиметрическую кривую (рис. 4). Если изменение массы регистрируется автоматически, кривая ТГ строится в зависимости не от температуры, а от времени, однако такая замена оси абсцисс обратима, если одновременно фиксируется и зависимость температуры в печи от времени. Наиболее просто замена оси абсцисс осуществляется в том случае, когда повышение температуры в печи происходит равномерно во времени.

 

Рис. 1.3.2 Термогравиметрическая кривая

На основании кривой ТГ можно судить о том, каким образом изменялась при нагревании масса пробы, например, при каких температурах и на сколько миллиграммов менялась масса пробы осадка ацетата кальция, а следовательно, при каких температурах происходили химические превращения Ca(СОО)2⋅H2O Ca(СОО)2 CaСО3 CaО.

Степень изменения массы определяется в зависимости от типа термовесов с точностью, примерно, от 0.5 до 0.1%, поэтому на основании результатов измерения можно производить довольно точные стехиометрические расчеты.

Принцип измерения в методе ДТА и устройство соответствующего прибора весьма просты. Возможно, этим объясняется то, что они в течение длительного времени применялись исследователями почти без изменений. Зато конструкция термовесов постоянно модифицировалась. В частности, были предложены конструкции, использующие различные ухищрения для подавления колебаний весов, а также конструкции, позволяющие автоматически регистрировать изменение массы. Первый экземпляр термовесов сконструировал японский исследователь Гонда в 1915 г. Впоследствии многие исследователи шли по пути совершенствования именно его конструкции. Среди используемых в настоящее время есть весы, качающиеся по призмам, весы с подвешенным коромыслом, весы с тормозящей нитью, весы пружинного типа, весы, снабженные жидкостным, воздушным или электромагнитным затуханием. Но, рассуждая объективно, ни одному из многочисленных типов нельзя отдать безусловное предпочтение.

Как изучение процессов, происходящих при нагревании глинистых минералов и пород, потребовало широкого распространения и развития метода ДТА, так и нерешенные вопросы определения постоянного состава аналитических осадков ускорили распространение метода термогравиметрии. Для исследования же иных вопросов последний метод долгое время применялся очень редко.

На проблему термической обработки аналитических осадков обратили, в свое время, внимание Винклер, а затем Шулек и Больдижар. Они указали на то, что многочисленные осадки могут быть высушены при комнатной температуре простым просасыванием воздуха. Но эксперименты ставились с помощью простых опытных приспособлений, доступных в то время, и ученые не смогли доказать правоту своего предположения. Лишь после распространения термогравиметрии стало возможным проведение качественных исследований в этой области. Так, Дювал и его сотрудники в 1946 г. исследовали почти 1000 аналитических осадков с помощью термовесов системы Шевенара – Ваше де ла Тюллая. Ученые выбирали температурные интервалы, в пределах которых исследуемый осадок имел постоянную массу и его химический состав мог считаться стехиометрическим, т. е. диапазоны температур, при которых высушивание или прокаливание могло производиться без опасности разложения данного вещества. Иными словами, лабораторию Дювала интересовали в первую очередь горизонтальные участки термогравиметрической кривой. С точки зрения поставленной ими цели, менее важным было то, каким образом происходили отдельные процессы разложения, разложился ли осадок в одной или в нескольких ступенях и каким был химический состав промежуточных продуктов в последнем случае и т. п.

Недостатки термогравиметрии обнаруживаются только тогда, когда целью испытания является именно определение хода процесса разложения. Кроме того, в тех случаях, когда две реакции следуют плотно друг за другом либо перекрывают друг друга или же чередуются реакции с большими и небольшими изменениями массы, тогда ме-тод термогравиметрии оказывается неопределенным и оценка кривой становится затруднительной и неточной.

Указанные трудности попытались устранить конструированием вакуумных термовесов. Сущность термогравиметрических испытаний в вакууме заключается в том, что выделившиеся газообразные побочные продукты немедленно удаляются из внутренней части материала, вследствие чего равновесие реакций разложения смещается в сторону разложения. Между твердой и газообразной фазами всегда устанавливается равновесие, изменяющееся в соответствии с парциальным давлением газовых продуктов. Термическое разложение в вакууме обычно происходит в узких температурных пределах и быстро, поэтому плотно следующие друг за другом реакции лучше отделяются друг от друга.

Эти же проблемы вынудили Преттре, Имелика, Бланшена, Петижана и Брефора разработать новый статический метод термогравиметрии, который был назван ими методом ступенчатого изотермического нагревания. Такой метод испытания несмотря на применение в нем автоматически работающих современных термовесов в действительности означал возвращение к старому методу периодического нагревания и взвешивания. Температуру печи при испытании не увеличивали до тех пор, пока масса пробы не становилась постоянной. Затем, незначительно увеличив температуру, опять дожидались постоянства массы. Таким способом удалось достичь того, что даже в случае медленно происходящих процессов устанавливалось равновесие, соответствующее данной температуре, и реакции, происходящие при более низкой температуре, не смешивались с реакциями, протекающими при более высокой. Полученные кривые показывают резкие и определенные переломы, значительно облегчающие оценку. Однако применение этого метода целесообразно лишь в исключительных случаях, так как процесс измерения является весьма длительным. Кроме того, при статическом способе измерения получаются термограммы, отличающиеся от результатов динамиче-ских термогравиметрических измерений. Отметим, что этот недостаток наблюдается и в случае термогравиметрических испытаний в вакууме.

Точно так же - только в определенных случаях - мог применяться и метод, предложенный Жибо и Железо. При разработке своего метода они использовали тот факт, что температуры разложения двух соединений, разлагающихся на газообразные побочные продукты тождественного качества, смещаются в сторону более высоких температур не в одинаковой степени, если в печи увеличивают концентрацию образующегося газа. Если, например, исследуется разложение двух карбонатов в атмосфере углекислого газа, то полученная этим способом термогравиметрическая кривая более селективно показывает интервалы разложения отдельных составных частей.

Таким образом, несмотря на всевозможные ухищрения, предпринимаемые для устранения трудностей оценки кривой ТГ, исследователям стало ясно, что необходим качественно новый подход к измерению.


Дата: 2019-05-28, просмотров: 250.