Деривативная термогравиметрия
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Затруднительность выполнения оценки термогравиметрических кривых вынудила Ф. Паулика, И. Паулика и Л. Эрдеи в 1954 г. приступить к разработке метода деривативной термогравиметрии (ДТГ). Ученые исходили не из принципа дифференциального разрешения вопроса, а из принципа вычислительных методов измерения. Вначале они попытались выполнить графическое дифференцирование кривой ТГ. Были установлены значения изменения массы между отдельными, по возможности наиболее густо расположенными и разбитыми на строго равномерные промежутки времени точками кривой ТГ. Полученные таким образом значения изменения массы откладывались на новом графике параллельно ординате системы в соответствующих точках времени, отмеренных по абсциссе, а построенные указанным способом точки соединялись линией.

Графическое дифференцирование, однако, оказалось при том уровне развития ЭВМ исключительно затруднительным и неточным. Поэтому для инструментального определения производной кривой ТГ изобретатели сконструировали установку, работающую на принципе индукции (рис. 7).

Рис. 1.5.1 Деривативная установка Паулика, Паулика и Эрдеи

 

С коромысла термовесов одна чашка была удалена и вместо нее подвешена катушка с большим числом витков, которая помещалась в гомогенное поле двух подковообразных постоянных магнитов и подключалась к клеммам гальванометра высокой чувствительности.

Очевидно, что посредством указанного простого устройства можно точно определить наряду с кривой ТГ и ее производную (скорость отклонения весов). Если весы вышли из состояния равновесия, то вместе с ними движется и катушка, витки которой пересекаются силовыми линиями магнита. Как следствие, в катушке возникает ток, сила которого пропорциональна скорости движения. Изменения силы индуцированного тока фиксируются отклонением гальванометра.

Испытания этой конструкции были выполнены таким образом, что при повышении температуры, наблюдаемой посредством милливольтметра, подключенного к полюсам расположенной в зоне печи термопары, через каждые 5...10 K по шкале весов отсчитывались изменение массы пробы и одновременно отклонение гальванометра.

Результаты измерения представлены на рис. 8.

 

Рис. 1.5.2 Результаты проведенных на деривативной установке исследований

 

Проведенные испытания показали, что истолкование основной кривой значительно облегчается одновременной записью деривативной термогравометрической кривой (ДТГ). Анализ последней дает более полную и правильную картину происходящих в пробе термических превращений. Следующие почти непрерывно друг за другом процессы на кривой термогравиметрии смешиваются, на деривативной же кривой они четко разделены.

 

Дериватография

При помощи метода ДТА легко установить направление и величину изменения энтальпии, связанной с химическими реакциями и другими процессами, происходящими в исследуемом веществе под влиянием тепла. С другой стороны, посредством метода ТГ можно с высокой степенью точности определить характер и величину изменения массы пробы с ростом температуры. На основании кривой ТГ можно также производить стехиометрические расчеты или вычисления процентного содержания. Исходя из перечисленных возможностей упомянутых методов возникла идея их одновременного использования для изучения превращений в веществе, происходящих под действием повышенных температур. Аппарат, в котором были совмещены различные варианты термического метода анализа – ДТА, ТГ, ДТГ, получил название дериватографа.

Несмотря на кажущуюся очевидность идеи совмещения методов дифференциально-термического анализа и термогравиметрии они в течение десятилетий применялись порознь. Это неслучайно. Сопоставление кривых ТГ и ДТА, означающих изменение массы и энтальпии, в силу разных причин, было весьма затруднительно. Паулик, Паулик и Эрдеи столкнулись с этим при проведении одновременно с термогравиметрическим испытанием дифференциально-термического анализа различных аналитических осадков.

Характер и ход обеих кривых существенно отличаются друг от друга, как это следует, например из анализа термограммы боксита месторождения "Нежа" (рис. 9 – пунктирные линии изображают кривые, полученные по отдельности аппаратами ДТА и ТГ, а непрерывные – кривые, полученные дериватографом). С математической точки зрения, кривая ТГ, выражая зависимость изменения массы от температуры, является интегральной кривой, а кривая ДТА, означающая зависимость частного дифференциала изменения энтальпии от температуры, является производной от интегральной зависимости изменения энтальпии с ростом температуры. Используя метод ДТГ, удалось ликвидировать связанные с этим трудности: производная кривая изменения массы (кривая ДТГ) во многом сходна с кривой производной изменения энтальпии (кривая ДТА) вследствие математического сродства обеих зависимостей, и, таким образом, их сопоставление уже не встречает затруднений (см. рис. 9).

 

Рис. 1.6.1 Сопоставление результатов разрозненных и совмещенных исследований

 

Совместному применению методов ДТГ и ТГ препятствовало и то обстоятельство, что характеристические температурные значения отдельных превращений, фиксируемые при помощи дифференциально-термоаналитического аппарата, обычно на 50...100 K выше значений, полученных посредством термовесов. Причина этого явления заключается в том, что при деривативных определениях температура измеряется в инертном материале или в пробе, в то время как в методе ТГ температура измеряется во внутренней зоне печи. Кривая, построенная в зависимости от изменений температуры печи, несомненно, должна значительно отличаться от кривой, полученной измерением температуры в инертном материале или пробе, обладающих в общем случае низкими значениями теплопроводности. Еще более значительную ошибку измерения температуры вызывает явление, заключающееся в том, что в результате различия опытных условий равновесия реакций термического разложения при использовании указанных двух методов смещены по фазе одно относительно другого (см. рис. 9). Дело в том, что в случае испытаний методом ДТА пробой заполняется с уплотнением узкий глубокий тигель. Газообразные побочные продукты, выделившиеся при реакциях разложения, вытесняют воздух из уплотненного материала. Парциальное давление этих побочных продуктов может сравняться с атмосферным, вследствие чего, естественно, задерживается реакция разложения. С другой стороны, при измерениях ТГ проба находится в неглубоком тигле в рыхлом состоянии, что противодействует образованию атмосферы из побочных газообразных продуктов, и реакция разложения протекает без задержек. Таким образом, измерения, проведенные порознь обоими методами, несовместимы друг с другом.

Как следует из приведенного анализа, сопоставление соответствующих точек кривых ДТА и ТГ, полученных в самостоятельных аппаратах, или же восстановление действительного хода термических превращений на основании обеих кривых встречают исключительно большие затруднения. Именно этим объясняется причина крайне редкого числа случаев совместного использования обоих классических методов испытания.



Хроматография

 

Хроматография - это физико-химический метод разделения и анализа смесей газов, паров, жидкостей или растворенных веществ сорбционными методами в динамических условиях. Метод основан на различном распределении веществ между двумя несмешивающимися фазами - подвижной и неподвижной.

Подвижной фазой может быть жидкость или газ, неподвижной фазой - твердое вещество, которое называют носителем. При движении подвижной фазы вдоль неподвижной, компоненты смеси сорбируются на неподвижной фазе. Каждый компонент сорбируется в соответствии со сродством к материалу неподвижной фазы (вследствие адсорбции или других механизмов). Поэтому неподвижную фазу называют также сорбентом. Захваченные сорбентом молекулы могут перейти в подвижную фазу и продвигаться с ней дальше, затем снова сорбироваться.

Таким, образом, хроматографию можно определить как процесс, основанный на многократном повторении актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Чем сильнее сродство компонента к неподвижной фазе, тем сильнее он сорбируется и дольше задерживается на сорбенте; тем медленнее его продвижение вместе с подвижной фазой. Поскольку компоненты смеси обладают разным сродством к сорбенту, при перемещении смеси вдоль сорбента произойдет разделение: одни компоненты задержатся в начале пути, другие продвинутся дальше. В хроматографическом процессе сочетаются термодинамический (установление равновесия между фазами) и кинетический (движение компонентов с разной скоростью) аспекты.

Хроматографический метод анализа разработан русским ботаником М.С. Цветом в 1903 г. С помощью этого метода ему удалось разделить хлорофилл на составляющие окрашенные вещества. При пропускании экстракта хлорофилла через колонку, заполненную порошком мела, и промывании петролейным эфиром он получил несколько окрашенных зон и назвал эти зоны хроматограммой (от греческого “хроматос” — цвет), а метод - хроматографией. Н.А. Измайлов и М.С. Шрайбер в 1938 г. разработали новый вид хроматографии, получивший название тонкослойной. Ими были разделены алкалоиды, экстрагированные из лекарственных растений на оксиде алюминия, нанесенном на стекло.

Отправной точкой бурного развития многих методов хроматографического анализа является работа лауреатов Нобелевской премии A. Мартина и Р. Синджа, ими был предложен и разработан метод распределительной хроматографии (1941г.). В 1952 г. А. Мартином и Л. Джеймсом были получены первые результаты в области газожидкостной хроматографии. Эти работы вызвали огромное число исследований, направленных на развитие метода газовой хроматографии.

За короткое время были усовершенствованы конструкции систем ввода проб, созданы чувствительные детекторы. Метод газовой хроматографии - первый из хроматографических методов, получивших инструментальное обеспечение. Начиная с 70-х годов происходит бурное развитие жидкостной хроматографии. К настоящему времени разработаны теория хроматографического процесса и множество хроматографических методов анализа.

Среди разнообразных методов анализа хроматография отличается самой высокой степенью информативности благодаря одновременной реализации функций разделения, идентификации и определения. Кроме того, метод используется и для концентрирования. Хроматографический метод анализа универсален и применим к разнообразным объектам исследования (нефть, лекарственные препараты, вещества растительного и животного происхождения, биологические жидкости, пищевые продукты и др.). Хроматография отличается высокой избирательностью и низким пределом обнаружения. Эффективность метода повышается при его сочетании с другими методами анализа, автоматизацией и компьютеризацией процесса разделения, обнаружения и количественного определения.

 

Дата: 2019-05-28, просмотров: 216.