Существуют следующие формы комплексных чисел: алгебраическая (x+iy), тригонометрическая (r(cos +isin )), показательная (rei ).
Всякое комплексное число z=x+iy можно изобразить на плоскости ХОУ в виде точки А(х,у).
Плоскость, на которой изображаются комплексные числа, называется плоскостью комплексного переменного z (на плоскости ставим символ z).
Ось ОХ – действительная ось, т.е. на ней лежат действительные числа. ОУ – мнимая ось с мнимыми числами.
x + iy - алгебраическая форма записи комплексного числа.
Выведем тригонометрическую форму записи комплексного числа.
;
Подставляем полученные значения в начальную форму:
, т.е.
r ( cos + isin ) - тригонометрическая форма записи комплексного числа.
Показательная форма записи комплексного числа следует из формулы Эйлера:
, тогда
z=rei - показательная форма записи комплексного числа.
Действия над комплексными числами
1. сложение. z1+z2=(x1+iy1)+ (x2+iy2)=(x1+x2)+i(y1+y2);
2. вычитание. z1-z2=(x1+iy1)- (x2+iy2)=(x1-x2)+i(y1-y2);
3. умножение. z1z2=(x1+iy1)*(x2+iy2)=x1x2+i(x1y2+x2y1+iy1y2)=(x1x2-y1y2 )+i(x1y2+x2y1);
4. деление. z1/z2=(x1+iy1)/(x2+iy2)=[(x1+iy1)*(x2-iy2)]/[ (x2+iy2)*(x2-iy2)]=
Два комплексных числа, которые отличаются только знаком мнимой единицы, т.е. z=x+iy (z=x-iy), называются сопряженными.
Произведение
- Если комплексные числа заданы в тригонометрической форме.
z1=r(cos +isin ); z2=r(cos +isin ).
То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.
- Если комплексные числа заданы в показательной форме.
; ;
Частное
- Если комплексные числа заданы в тригонометрической форме.
- Если комплексные числа заданы в показательной форме.
Возведение в степень
1. Комплексное число задано в алгебраической форме.
z=x+iy, то zn находим по формуле бинома Ньютона:
zn=(x+iy)n.
- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).
; n!=1*2*…*n; 0!=1; .
Применяем для комплексного числа.
В полученном выражении нужно заменить степени i их значениями:
i0=1 Отсюда, в общем случае получаем: i4k=1
i1=i i4k+1=i
i2=-1 i4k+2=-1
i3=-i i4k+3=-i
i4=1
i5=i
i6=-1
Пример.
i31= i28 i3=-i
i1063= i1062 i=i
2. Если комплексное число задано в тригонометрической форме.
z=r(cos +isin ), то
- формула Муавра.
Здесь n может быть как “+” так и “-” (целым).
3. Если комплексное число задано в показательной форме:
Извлечение корня
Рассмотрим уравнение: .
Его решением будет корень n–ой степени из комплексного числа z: .
Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.
Если комплексное число задано в тригонометрической форме:
z=r(cos +isin ), то корень n-ой степени от z находится по формуле:
, где к=0,1…n-1.
РЯДЫ
Числовые ряды
Пусть переменная а принимает последовательно значения а1,а2,а3,…,аn. Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.
Числовым рядом называется выражение а1+а2+а3+…+аn+…= . Числа а1,а2,а3,…,аn – члены ряда.
Например.
а1 – первый член ряда.
аn – n-ый или общий член ряда.
Ряд считается заданным, если известен n-ый (общий член ряда).
Числовой ряд имеет бесконечное число членов.
Числители – арифметическая прогрессия (1,3,5,7…).
n-ый член находится по формуле
аn=а1+d(n-1); d=аn-аn-1.
Знаменатель – геометрическая прогрессия.
bn=b1qn-1; .
Рассмотрим сумму первых n членов ряда и обозначим ее Sn.
Sn=а1+а2+…+аn.
Sn – n-ая частичная сумма ряда.
Рассмотрим предел:
S - сумма ряда.
Ряда сходящийся, если этот предел конечен (конечный предел S существует).
Ряд расходящийся, если этот предел бесконечен.
В дальнейшем наша задача заключается в следующем: установить какой ряд.
Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.
, C=const.
Геометрическая прогрессия является сходящимся рядом, если , и расходящимся, если .
Также встречается гармонический ряд (ряд ). Этот ряд расходящийся.
Свойства числовых рядов
1. Если сходится а1+а2+а3+…+аn+…= , то сходится и ряд аm+1+аm+2+аm+3+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.
2. Если ряд а1+а2+а3+… сходится и его сумма равна S, то ряд Са1+Са2+…, где С= так же сходится и его сумма равна СS.
3. Если ряды а1+а2+… и b1+b2+… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1+b1)+(а2+b2)+(а3+b3)+… и (а1-b1)+(а2-b2)+(а3-b3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.
4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).
- необходимый признак (условие) сходимости ряда.
б). Если то ряд расходящийся – достаточное условие расходимости ряда.
-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.
Знакоположительные ряды
Дата: 2019-05-28, просмотров: 192.