Существует 4 вида дифференциальных уравнений первого порядка
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Первый вид

 

Несобственные интегралы с бесконечными пределами имеют вид:

 

; ;

 

Несобственные интегралы от функции в пределах от (а) до ( ) определяются равенством.

 

1. ; 2. ; 3.

 

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.

Второй вид

 

Несобственные интегралы от неограниченной функции имеют вид: , где существует точка “с” (точка разрыва) такая, что ; , т.е. (в частности c=a; c=b).

Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при или , то полагаем:

Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.

 


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .

Символически дифференциальное уравнение выглядит:

 

F(x,y,y’,y’’…,y(n))=0 или .

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.

3. Решением дифференциального уравнения называется всякая функция , которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б). ; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.

Подставляя  в начальное условие , находим вполне определенные значения постоянной С. Тогда  является частным решением уравнения.

Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.

Теорема существования и единственности решения дифференциального уравнения (теорема Коши).

Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная  определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение , удовлетворяющее начальному условию у=у0 при х=х0.

Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).

Замечание. “Найти частное решение”=“Решить задачу Коши”.


Произведение

- Если комплексные числа заданы в тригонометрической форме.

z1=r(cos +isin ); z2=r(cos +isin ).

То произведение z1*z2 комплексных чисел находится: , т.е. модуль произведения равен произведению модулей, а аргумент произведения равен сумме аргументов сомножителей.

- Если комплексные числа заданы в показательной форме.


; ;


Частное

- Если комплексные числа заданы в тригонометрической форме.

 

 

- Если комплексные числа заданы в показательной форме.

 

 

Возведение в степень

1. Комплексное число задано в алгебраической форме.

z=x+iy, то zn находим по формуле бинома Ньютона:

zn=(x+iy)n.

 

- число сочетаний из n элементов по m (число способов, сколькими можно взять n элементов из m).

 

; n!=1*2*…*n; 0!=1; .

 

Применяем для комплексного числа.

 


В полученном выражении нужно заменить степени i их значениями:

i0=1 Отсюда, в общем случае получаем: i4k=1

i1=i                          i4k+1=i

i2=-1                       i4k+2=-1

i3=-i                        i4k+3=-i

i4=1

i5=i

i6=-1

Пример.

i31= i28 i3=-i

i1063= i1062 i=i

2. Если комплексное число задано в тригонометрической форме.

 

z=r(cos +isin ), то

- формула Муавра.

Здесь n может быть как “+” так и “-” (целым).

3. Если комплексное число задано в показательной форме:

 

 


Извлечение корня

Рассмотрим уравнение: .

Его решением будет корень n–ой степени из комплексного числа z: .

Корень n–ой степени из комплексного числа z имеет ровно n решений (значений). Корень из действующего числа n-ой степени имеет только одно решение. В комплексных – n решений.

Если комплексное число задано в тригонометрической форме:


z=r(cos +isin ), то корень n-ой степени от z находится по формуле:

 

, где к=0,1…n-1.

 


РЯДЫ



Числовые ряды

 

Пусть переменная а принимает последовательно значения а123,…,аn. Такое перенумерованное множество чисел называется последовательностью. Она бесконечна.

Числовым рядом называется выражение а123+…+аn+…=  . Числа а123,…,аn – члены ряда.

Например.

а1 – первый член ряда.

аn – n-ый или общий член ряда.

Ряд считается заданным, если известен n-ый (общий член ряда).

 

 

Числовой ряд имеет бесконечное число членов.

 

 

Числители – арифметическая прогрессия (1,3,5,7…).

n-ый член находится по формуле

 

аn1+d(n-1); d=аnn-1.

 

Знаменатель – геометрическая прогрессия.

 


bn=b1qn-1; .

 

Рассмотрим сумму первых n членов ряда и обозначим ее Sn.

 

Sn=а1+а2+…+аn.

 

Sn – n-ая частичная сумма ряда.

Рассмотрим предел:

S - сумма ряда.

Ряда сходящийся, если этот предел конечен (конечный предел S существует).

Ряд расходящийся, если этот предел бесконечен.

В дальнейшем наша задача заключается в следующем: установить какой ряд.

Одним из простейших, но часто встречающихся рядов является геометрическая прогрессия.

 

, C=const.

Геометрическая прогрессия является сходящимся рядом, если , и расходящимся, если .

Также встречается гармонический ряд (ряд ). Этот ряд расходящийся.


Свойства числовых рядов

1. Если сходится а123+…+аn+…= , то сходится и ряд аm+1m+2m+3+…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2. Если ряд а123+… сходится и его сумма равна S, то ряд Са1+Са2+…, где С= так же сходится и его сумма равна СS.

3. Если ряды а12+… и b1+b2+… сходятся и их суммы равны соответственно S1 и S2, то ряды (а1+b1)+(а2+b2)+(а3+b3)+… и (а1-b1)+(а2-b2)+(а3-b3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

 

- необходимый признак (условие) сходимости ряда.

б). Если  то ряд расходящийся – достаточное условие расходимости ряда.

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды

Схема

Если (3) – сходится  (1) - сходится абсолютно.

Если (3) – расходится

При исследовании на сходимость знакопеременного ряда (1) начинать надо с разбора знакоположительного ряда (3). Т.к. ряд (3)- знакоположительный ряд, то к нему можно применить все признаки сходимости для знакоположительных рядов.

Из расходимости ряда (3) не следует расходимость ряда (1), но если (3) расходится по признакам Даламбера или Коши радикальный, то расходится не только ряд (3), но и ряд (1).

Если ряд – знакочередующийся, то для него дается еще один признак сходимости:



Признак Лейбница

Если для знакочередующегося ряда b1-b2+b3-b4+…(bn 0) выполняются условия:

1. b1 b2 b3 b4…;

2. , - то данный ряд сходится условно.

Первый вид

 

Несобственные интегралы с бесконечными пределами имеют вид:

 

; ;

 

Несобственные интегралы от функции в пределах от (а) до ( ) определяются равенством.

 

1. ; 2. ; 3.

 

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.

Второй вид

 

Несобственные интегралы от неограниченной функции имеют вид: , где существует точка “с” (точка разрыва) такая, что ; , т.е. (в частности c=a; c=b).

Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при или , то полагаем:

Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.

 


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .

Символически дифференциальное уравнение выглядит:

 

F(x,y,y’,y’’…,y(n))=0 или .

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.

3. Решением дифференциального уравнения называется всякая функция , которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б). ; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.

Подставляя  в начальное условие , находим вполне определенные значения постоянной С. Тогда  является частным решением уравнения.

Геометрически частное решение обозначает: начальное условие задает некоторую точку на плоскости и из семейства кривых (общее решение) выбирается та единственная кривая, которая проходит через эту точку.

Теорема существования и единственности решения дифференциального уравнения (теорема Коши).

Если в дифференциальном уравнении y=f(x,y) функция f(x,y) и ее частная производная  определены и непрерывны в некоторой области Д на плоскости ХОУ, то какова бы ни была внутренняя точка (х0,у0) этой области, данное уравнение имеет единственное решение , удовлетворяющее начальному условию у=у0 при х=х0.

Геометрически смысл заключается в следующем: каждой точке (х0,у0) области Д соответствует только одна интегральная кривая, проходящая через эту точку (каждой точке соответствует только одно частное решение).

Замечание. “Найти частное решение”=“Решить задачу Коши”.


Существует 4 вида дифференциальных уравнений первого порядка.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными.

Дифференциальные уравнения первого порядка в общем виде можно записать либо через производные F(x,y,y’)=0, либо через дифференциалы

 

.

 

Дифференциальное уравнение- уравнение с разделяющимися переменными, если его можно представить в виде:

 

- - через производную.

- - через дифференциал.

 

В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.

Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.

Решение.

 

-

; -интегрируем и получаем решение.


-

;

 

Однородные дифференциальные уравнения первого порядка

 

Функция f(x,y) называется однородной функцией n–го измерения, если при любом  выполняется условие: .

Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.

Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.

 

P(x,y)dx=-Q(x,y)dy;

 

Однородное уравнение всегда можно привести к виду  и с помощью замены  однородное уравнение всегда приводится к уравнению с разделяющимися переменными ( ; y=xt; y’=t+xt’).

 

Линейные дифференциальные уравнения

ЛДУ- уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.

Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’

 

U’V+UV’+P(x)UV=Q(x)

V(U’+P(x)U)+UV’=Q(x)


Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:

1). U’+P(x)U=0 находим U.  2). UV’=Q(x) находим V. . С ставится только при вычислении второго уравнения.

Замечание. Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.

 

Уравнения Бернулли

УБ- дифференциальные уравнения вида y’+P(x)y=Q(x)*yn, где

- т.к. при этих значениях уравнение будет линейным.

УБ решаются так же, как и линейные.

 

Дифференциальные уравнения второго порядка

 

Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0

Как и в случае дифференциальных уравнений первого порядка для решения дифференциальных уравнений второго порядка существуют общее и частное решения. Но, если для дифференциальных уравнений первого порядка решение зависело от одной константы С, то для дифференциальных уравнений второго порядка решение зависит от двух постоянных: - общее решение.

Если заданы начальные условия (у=у0, у=у0 при х=х0), то получаем частное решение, удовлетворяющее этим начальным условиям.

Начальные условия так же могут задаваться в виде:

у=у0 при х=х0; у=у1 при х=х1.


Три случая понижения порядка




Дата: 2019-05-28, просмотров: 185.