ТЕХНИКО-ЭКОНОМИЧЕСКИЙ УРОВЕНЬ И ОБОСНОВАНИЕ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

РЕФЕРАТ

Дипломный проект состоит из 186 страниц, 36 таблиц, 2 рисунка, 19 источников и 8 листов графического материала.

Тема дипломного проекта: ″Проект производства формалина″.

Цель проекта: довести мощность одной технической нитки до 126666 тонн/год и выполнить необходимые расчеты основного оборудования.

В дипломном проекте произведены: материальный, тепловой, технологический, механический, гидравлический расчеты при изменении производительности на основе существующих мощностей.

Рассмотрены вопросы выбора технологической схемы, безопасности и экологичности проекта, охраны окружающей среды, организации и экономики производства.

Итог дипломной работы: имеющееся оборудование справиться с новой нагрузкой и не требует замены. С увеличением мощности производства, себестоимость единицы продукции формалина снизилась, что привело к увеличению прибыльности производства.



СОДЕРЖАНИЕ

Введение

1. Технико-экономический уровень и обоснование основных технических решений

2. Характеристика производимой продукции

2.1 Характеристика исходного сырья, материалов и полупродуктов

3. Физико-химические основы технологического процесса

4. Выбор и обоснование технологического процесса

5. Описание технологического процесса и схемы

5.1 Получение метаноло-воздушной смеси

5.2 Синтез формальдегида

5.3 Получение формалина-″сырца″

5.4 Ректификация формалина-″сырца″

6. Материальный баланс

7. Ежегодные нормы расхода основных видов сырья, материалов и энергоресурсов

8. Ежегодные нормы образования отходов производства

9. Нормы технологического режима

10. Компоновка оборудования

10.1 Характеристика производственных помещений

11. Безопасность и экологичность проекта производства формалина

11.1 Производственная санитария

11.2 Техника безопасности

12. Охрана окружающей среды

12.1 Охрана атмосферного воздуха

12.2 Очистка сточных вод

12.3 Твердые отходы

13. Защита человека в чрезвычайных ситуациях

13.1 Производственные аварии

13.2 Стихийные бедствия

14. Организация и экономика производства

15. Материальный расчет

15.1 Материальный баланс стадии ректификации

15.2 Материальный баланс стадии абсорбции

15.3 Материальный баланс стадии контактирования и спиртоиспарения

16. Тепловой расчет

17. Технологический расчет основного аппарата

17.1 Технологический расчет реактора

17.2 Технологический расчет подконтактного холодильника

18. Гидравлический расчет

19. Механический расчет

19.1 Обоснование конструкции основного аппарата

19.2 Выбор материала основных элементов аппарата

19.3 Расчет диаметра патрубков

19.4 Расчет толщины стенок обечайки и днища

19.5 Расчет толщины днища подконтактного холодильника

19.6 Расчет укрепления отверстий

19.7 Расчет крышки аппарата

19.8 Расчет трубной решетки подконтактного холодильника

19.9 Расчет тепловой изоляции

19.10 Расчет компенсатора подконтактного холодильника

19.11 Расчет опорных лап

20. Подбор вспомогательного оборудования

Заключение

Список используемой литературы

Спецификация



ВВЕДЕНИЕ

Среди многих сотен тысяч органических соединений, известных в настоящее время, формальдегиду, принадлежит особая роль.

Формальдегид – весьма активное химическое соединение, легко вступающее в реакцию с другими веществами с образованием большого класса новых соединений, многие из которых обладают важными свойствами. Благодаря реакционной способности формальдегид за сравнительно короткий промежуток времени превратился в один из незаменимых полупродуктов многотоннажного органического синтеза.

Формальдегид используется в промышленности в качестве сырья для производства синтетических смол, пластических масс, новых органических красителей, поверхностно-активных веществ, лаков, лекарственных препаратов и взрывчатых веществ. В сельском хозяйстве для протравления семян, в кожевенной промышленности для дубления кожи, в медицине как антисептическое средство и в животноводстве. Круг применения формальдегида растет из года в год. В связи с этим растет и его производство.

В настоящее время основным потребителем формальдегида является промышленность синтетических смол: производство фенолформальдегидных, мочевиноформальдегидных смол; смол, модифицированных путем обработки формальдегидом; малорастворимых лаков, покрытий, клеев, слоистых пластиков.

Наибольшее распространение получил продукт, содержащий 35 – 37 % формальдегида и 6 – 11 % метанола, называемый формалином. Рецептура формалина сформировалась исторически, под влиянием следующих факторов. Во-первых, метанол и вода сопутствуют формальдегиду на стадии его получения наиболее употребительным методом (метанол – сырье, вода – побочный продукт и абсорбент). Во-вторых, раствор указанного состава при положительных температурах вполне стабилен к выпадению полимера и может храниться или транспортироваться в течении неопределенно долгого времени. В – третьих, в виде водно-метанольного раствора формальдегид может применяться в большинстве производственных синтезов, а также при непосредственном использовании. и, наконец, в-четвертых, именно формалин получается при окислительной конверсии метанола в присутствии металлических катализаторов на сади абсорбции контактного газа; никаких дополнительных операций по приданию продукту товарных свойств (концентрирование, очистка и т. д.), как правило, не требуется.

В городе Томске на базе Томского нефтехимического комбината существует действующее производство формалина («Завод формалина и карбосмол») мощностью 120 тысяч тонн в год.

Основная цель проекта заключается в определении возможности расширения этого производства на примере установки синтеза формальдегида. Важным моментом является установление возможности обеспечения новой, повышенной производительности уже действующим оборудованием. Также необходимо рассмотреть вопросы, касающиеся технологического контроля, охраны труда и экологии в изменившихся условиях эксплуатации.

 



Механизм процесса

Ключевые превращения осуществляются на поверхности катализатора. Метанол адсорбируется на поверхности окисленного серебра. На поверхности свободного неокисленного серебра метанол адсорбируется очень слабо, причем с ростом температуры, количество поглощенного продукта уменьшается. Превращение поглощенного продукта уменьшается молекул спирта с кислородом, химсорбированным на атомах серебра, т.е. активными центрами катализатора являются поверхностные окислы серебра. В процессе хемосорбции кислорода на атомах серебра на адсорбированный кислород, происходит его диссоциация на атомные ионы (атомарная адсорбция). Выделяют 3 типа (области) адсорбции в зависимости от степени окисления серебра. При степени окисления до 0,1 - 0,12 см3 О22 Ag, т.е. в пределах покрытия поверхности монослоем кислорода, один атом кислорода связан с двумя поверхностными атомами серебра (Ag2SО):

 

 (3.14)


С увеличением степени окисления до (0,22-0,26) см3 О22Ag преобладает соединение, в котором атом кислорода связан с одним атомом поверхностного серебра (AgSO или Ag2SO2):

 

 или  (3.15)

 

При дальнейшем окислении возникает структура с большим содержанием кислорода на атом серебра:

 

 (3.16)

 

Каталитическая специфичность серебра обуславливается особым состоянием кислорода на серебре. В то время как на других металлах при активированной адсорбции кислорода образуется только атомные ионы О- или О2-, вызывающие сгорание исходного продукта до углекислого газа, на серебре образуются поверхностные молекулярные ионы типа О2- или О22-. Поверхностный ион в состав поверхностного оксида Ag2+O2-. Атомные ионы, образующие с серебром активные центры при адсорбции метанола на них ослабляют или полностью разрывают химические связи в адсорбированной молекуле. Дальнейшие взаимодействия протекают между двумя хемосорбированными частицами, находящихся на соседних активных центрах или между хемосорбированной частицей и физически адсорбированной или налетающей из объема молекулой.

 


Термодинамика реакций

Реакции окислительного дегидрирования имеют тепловой эффект, зависящий от доли реакций окисления и особенно дегидрирования. Так как окисление протекает с выделением тепла, введением тех или иных количеств кислорода, можно широко вальировать эффект суммарного превращения. Это является одним из преимуществ окислительного дегидрирования – устраняется эндотермичность процесса и необходимость в постоянном подогреве реакционной массы. Практически для получения формальдегида для поддержания необходимой температуры в зоне контактирования, с учетом возмещения потерь тепла в окружающую среду. Необходимо, чтобы процесс шел на 55% через окисление и на 45% через дегидрирование. Тогда процесс можно осуществлять в реакторе адиабатического типа, не имеющего поверхности теплообмена. При таком соотношении реакций дегидрирования и окисления исходная паро-воздушная смесь должна содержать около 40% (объемные доли) метанола, что находится за верхним пределом взрываемости метанола в воздухе [36,5%].

Смещения равновесия реакций окислительного дегидрирования вправо обусловлено связыванием части водорода в воду, которая не принимает участия в равновесии реакций гидрирования – дегидрирования.

 
-CH2O


+0,5О2

 (3.17)

 

Разбавление метанола на 10 - 12% водой также смещает равновесие в сторону выхода формальдегида, за счет подавления побочных реакций. Образованию побочных реакций препятствует недостаток кислорода в процессе, т.к. глубокое окисление не получает значительного развития. Выход формальдегида на пропущенное сырье достигает 80-85% при степени конверсии метанола 85-90%. При дегидрировании ввиду отщепления водорода всегда происходит увеличение объемов газа, поэтому повышение степени конверсии благоприятствует низкое давление. Поэтому для процессов дегидрирования выбирают давление, близкое к атмосферному, а в некоторых случаях процесс осуществляют в вакууме. В места вакуума можно применять разбавление реакционной массы водяным паром.

В производстве формалина метанол разбавляют на 10 - 12% водяным паром.

Наличие водяных паров в реакционной массе ведет к снижению парциальных давлений реагентов и росту равновесной степени конверсии.

 


Кинетика реакций

При температуре 600 - 700°С скорость превращения метанола в формальдегид лимитируется подводом реагентов к поверхности катализатора, т.е. процесс протекает во внедиффузионной области. Кинетическая область протекания реализуется при температуре ниже 300°С. Признаки превращения метанола в формальдегид наблюдается уже при температуре 200 - 240°С. Выход формальдегида формальдегида в этих условиях составляет примерно 1% при конверсии метанола 1,5 - 2%.

При температуре 200°С выход формальдегида 3,6% при конверсии метанола 4,6%. Реакции протекают в этом случае по окислительному механизму. При температуре 290 - 300°С реакция смещается в переходную область. При 300°С происходит «зажигание» катализатора. Температура самопроизвольно повышается до 600 - 700°С, соответствующей заданному соотношению О2:СН3ОН. Обратному переходу процесса в кинетическую область способствует снижению температуры до 350°С за счет увеличения скорости потока реагентов. В этом случае формальдегид является промежуточным продуктом реакции: при времени контакта (5 - 10)*10-3 секунд происходит накапливание его, а при дальнейшем времени контакта наблюдается его расходование. Конечный продукт реакции – углекислый газ. При 370 - 400°С процесс перемещается в область внешней диффузии. Протекание процесса в диффузионной области обуславливается значительной разности концентраций реагентов и продуктов реакции на поверхности серебра и в потоке. Само химическое взаимодействие между молекулами метанола и кислорода происходит очень быстро и разогрев катализатора настолько велик, что он оказывается достаточным для поддержания высокой температуры реакции. Конверсия кислорода резко возрастает. На промышленных установках при (600 - 700)°С селективность достигает значений 91 - 93%. Объемное содержание водорода в газообразных продуктах 18 - 20%. То есть проведение реакции в диффузионной области преимущественней, т.к. резко возрастает активность и селективность катализатора, что приводит к значительному повышению производительности катализатора (на 1,5-2,0 порядка) и исключает необходимость подвода тепла из вне для поддержания температуры в реакторе. Максимальная селективность образования формальдегида 90% происходит при значении соотношения О2:СН3ОН в пределах 0,68:0,7. При движении горячей реакционной смеси от слоя катализатора происходит нарастание количества углекислого газа и водорода с одновременным уменьшением формальдегида. Для снижения этого процесса необходимо охлаждение реакционной смеси поверхностью с температурой не выше 170°С. Это осуществляется в подконтактном холодильнике.



Синтез формальдегида

Образование формальдегида из метанола происходит в контактном аппарате поз.Р1 при прохождении метаноло - воздушной смеси через слой катализатора при температуре (550 - 600)°С ("мягкий режим") или с добавлением воды при температуре (650 - 700)°С ("жесткий режим").

Контактный аппарат поз.Р1 представляет собой вертикальный цилиндрический аппарат, в нижней части которого расположен кожухотрубный теплообменник, в межтрубное пространство которого подается водяной конденсат, а по трубному пространству проходят реакционные газы. Катализатор укладывается на 2 слоя нержавеющей сетки, (10х10) мм и (1х1) мм, высотой (120-150) мм, а сверху помещается электрозапал.

Разогрев контактной массы, при пуске, до температуры (300 - 350)°С, при которой начинается реакция превращения метанола в формальдегид, осуществляется включением электрозапала, а дальнейший подъем температуры происходит за счет тепла реакций.

Температура в слое катализатора поддерживается автоматически, подачей пара в греющую камеру поз.Т1 спиртоиспарителя, и сопровождается световой и звуковой сигнализацией при температуре в слое катализатора 620°С – в "мягком режиме" и 720°С – в "жестком режиме". При достижении температуры в слое катализатора в "мягком режиме" – 650°С, а в "жестком режиме" – 750°С происходит автоматическое отключение воздуходувки поз.М1/1-3.

В результате реакций, протекающих в слое катализатора, из метаноло -воздушной смеси образуются контактные газы, в состав которых входят: формальдегид, водород, углекислый газ, окись углерода, азот, пары воды, непрореагировавший метанол.

Для предотвращения термического разложения образовавшегося формальдегида и прекращения побочных реакций, контактные газы, выходящие из зоны контактирования, резко охлаждаются в подконтактном холодильнике до температуры не более 200°С за счет испарения водного конденсата, поступающего из паросборника поз.Е4 в межтрубное пространство подконтактного теплообменника. Образовавшаяся в подконтактном холодильнике паро-водяная смесь за счет естественной циркуляции поступает в паросборник поз.Е4, где отделяется пар от конденсата. Давление пара в паросборнике поз.Е4 (1,8-2)кгс/см2, поддерживается паром подаваемым в паросборник поз.Е4 из теплопункта от коллектора.

Конденсат из теплообменника поз.Т1 спиртоиспарителя собирается в конденсатосборник поз.Е3, откуда насосами поз.Н1/1-2 через обратный клапан подается в паросборник поз.Е4.

5.3 Получение формалина - "сырца"

Контактные газы, охлажденные в подконтактном холодильнике реактора, поступают в поглотительную систему, состоящую из абсорбционной колонны поз.К1, аппарата воздушного охлаждения поз.Х4, пластинчатых теплообменников поз.Т3, Т4, Т6, Т5 и циркуляционных насосов поз.Н2/1-3, Н3/1-3.

Абсорбционная колонна поз.К1 представляет собой вертикальный цилиндрический аппарат переменного сечения: нижняя кубовая часть диаметром 2800 мм с шестью встроенными теплообменниками, с 24 тарелками (1,7,13, 19 тарелки – глухие, с 21 по 24 – колпачковые, остальные – жалюзийно-клапанного типа). В верхней части колонны для предотвращения уноса капель жидкости предусмотрен каплеотбойник.

В кубе абсорбционной колонны поз.К1 происходит охлаждение контактных газов, конденсация паров воды и метанола, а также хемосорбция водой значительной части формальдегида. Несконденсировавшиеся пары и газы из куба поднимаются вверх по колонне навстречу орошающей жидкости.

Орошение абсорбционной колонны осуществляется водой, поступающей на 24 тарелку расходом до 6 мЗ/ч и охлажденной в теплообменнике поз.Т6 до температуры не более 25°С. Для оперативного изменения концентрации формальдегида в кубе колонны предусмотрена подача жидкости до 6 м3/ч от насосов поз.Н1/2,3 в куб колонны поз.К1.

Уровень в кубе колонны поз.К1 поддерживается (20-80)% и в зависимости от нагрузки и давления в системе регулируется отбором формалина на питание ректификационной колонны поз.К2.

При стабильном режиме узлов синтеза абсорбции возможна работа технологической нитки без узла ректификации. Остановка узла ректификации производится при массовой доле метанола (6-8)% и формальдегида (37 - 38)% в кубе абсорбционной колонны поз.К1.

Дополнительно при этом осуществляется отвод жидкости с 13-й «глухой» тарелки в емкость. Уровень на 13-й тарелке поддерживается (20 - 80)% и регулируется отбором жидкости с расходом (0,5 - 3)м3/ч от насоса поз.Н3/2,3 в емкость.

Уровень в кубе колонны поз.К1, в зависимости от нагрузки, давления в системе и массовой доли метанола, поддерживается (10-80)% и регулируется, отбором формалина в стандартизаторы.

Часть тепла, выделяющаяся в кубе колонны, снимается в 4-х верхних встроенных теплообменниках оборотной водой, в 2-х нижних – метанолом, поступающим в процесс, а остальная часть тепла снимается циркуляцией формалина через аппарат воздушного охлаждения поз.Х4. Дополнительно съем тепла реакционных газов, теплоты поглощения и конденсации в колонне поз.К1 осуществляется охлаждением слабого формалина, выводимого с глухих тарелок, в выносных пластинчатых теплообменниках по контурам:

1 контур-1-я тарелка-насос Н2/2,3-теплообменник Т3-6-я тарелка.

2 контур-7-я тарелка-насос Н3/1,2-теплообменник Т4-12-я тарелка.

3 контур-13-я тарелка-насос Н3/2,3-теплообменник Т5-18-я тарелка.

4 контур-дем.вода и надсмольная вода-теплообменник Т6-24-я тарелка.

Температура в абсорбционной колонне поз.К1 контролируется следующим образом:

на выходе из куба колонны -не более 70°С,

под первой тарелкой - не более 80°С,

на 9-й тарелке - не более 50°С,

на 18 тарелке - не более 30°С,

на 24 тарелке - не более 25°С,

вверху колонны - не более 25°С.

Охлаждение формалина в теплообменниках поз.Т3, Т4 производится оборотной водой до температуры не более 60°С и 30°С соответственно, а в теплообменниках поз.Т5 и Т6 оборотной водой до температуры не более 25°С.

Выхлопные газы с верха колонны поз.К1 с температурой не более 25°С направляются на установку термического обезвреживания, проходя через конденсатосборник поз.Х1, где отделяется и самотеком сливается в стандартизатор сконденсировавшаяся жидкость.

Выхлопные газы, которые не может принять УТО и во время аварийных остановок поступают для сжигания на факельную установку.

Состав выхлопных газов в объемных долях, %:

СО2 - не более 5,

СО - не более 5,

Н2 - 16-26,

О2 - не более 1,2,

СН4 - не более 1,

метанол - не более 7 г/м3,

формальдегид - не более 4 г/м3,

азот - по разности.

По составу выхлопных газов можно судить о работе катализатора, о наличии отклонений от норм технологического режима.

Повышение содержания суммы углеродосодержащих газов свидетельствует об усилении побочных реакций. В частности, увеличение объемной доли двуокиси углерода свыше 5% свидетельствует об избытке кислорода в метаноло - воздушной смеси.

Увеличение содержания окиси углерода в выхлопных газах – результата перегрузки и отравления катализатора.

Объемная доля метана более 1% бывает при высокой температуре в нижних слоях катализатора, где нет уже кислорода, кроме этого содержание метана увеличивается при отравлении каталитической массы железом или его солями, при попадании асбеста (от прокладки), что сопровождается выделением сажи.

Объемная доля водорода ниже 16% указывает на малую конверсию, если температура низка, и на избыток кислорода при повышенной температуре.

Увеличение объемной доли водорода в газах (свыше 20%) указывает на повышение степени полезной конверсии и на уменьшение побочных реакций.

Давление верха колонны поз.К1 не более 0,34 кгс/см2, в кубе – не более 0,67 кгс/см2.

При повышении давления выхлопных газов из колонны поз.К1 выше 0,38 кгс/см2 открывается электрозадвижка поз.К1-36 "на свечу".

 

5.4 Ректификация формалина - "сырца"

Формалин - "сырец" с массовой долей метанола до 20% и формальдегида не более 38% из куба абсорбционной колонны поз.К1 насосами поз.Н2/1-2 подается на ректификацию, где вверху отделяется метанол.

Ректификация метанольного формалина ведется в колонне поз.К2 под вакуумом. Проведение ректификации под вакуумом позволяет снизить температуру, что предотвращает повышение кислотности формалина за счет уменьшения протекания реакции Канницарро:

 

2СН2О + Н2О → СН3ОН + НСООН(5.1)

 

Ректификационная колонна представляет собой вертикальный цилиндрический аппарат диаметром 2900 мм, высотой 52000 мм и 70-ю колпачковыми тарелками с радиальным сливом.

Вакуум в ректификационной колонне поз. К2 создается вакуум-насосом поз. Н6/1-2 и поддерживается в кубе (минус 0,2 ÷ минус 0,60) кгс/см2, а вверху колонны (минус 0,44 ÷ минус 0,70) кгс/см2.

Обогрев колонны поз.К2 осуществляется через кипятильник поз.Т7 паром давлением 2 кгс/см2. Температура формалина в кубе колонны поз. К32 поддерживается (75-95)°С, вверху колонны поз.К2 – (40-50)°С, в укрепляющей части (60 - 70)°С, в исчерпывающей – (70 - 80)°С.

Формалин - "сырец" из абсорбционной колонны поз.К1 расходом (10-21) м3/ч, некондиционный формалин, подаваемый из стандартизаторов с расходом до 8 м3/ч поступает на 34, 42, 52 тарелки ректификационной колонны.

Пары метанола и формальдегида нагретые внизу колонны поднимаются вверх, а сверху (навстречу парам) подается почти чистый жидкий метанол. При соприкосновении поднимающихся паров со стекающей жидкостью происходит частичная конденсация формалина из формалина-"сырца" и частичное испарение метанола. Таким образом, стекающая жидкость обогащается формальдегидом, а поднимающиеся пары обогащаются метанолом, в результате чего выходящие из колонны пары представляют собой почти чистый метанол. Эти пары поступают в аппараты воздушного охлаждения поз. Х5/1-2, где охлаждаются до температуры не более 50°С, конденсируются и отделяются в газоотделителе поз.Х6 от жидкости. Жидкий метанол сливается в емкость поз.Е5, а газовая фаза дополнительно охлаждается в теплообменнике поз.Т9 оборотной водой и поступает в газоотделитель поз.Х7. Жидкая фаза после газоотделителя поз. Х7 сливается в емкость поз.5, а несконденсировавшиеся пары и инертны направляются к вакуум-насосу поз.Н6/1,2.

Выбросы от вакуум-насоса поз.Н6 направляются в верхнюю часть абсорбционной колонны поз.К1, где отмываются водой от большей части метанола, и вместе с выхлопными газами абсорбционной колонны поступают на сжигание.

Метанол из емкости поз. Е5 с массовой долей формальдегида до 6% и метанола не менее 92 % насосом поз.Н5/1,2, с расходом (5 - 15) м3/ч, подается в виде флегмы в колонну поз.К2, а избыток, с расходом до 6,5 м3/ч, направляется в процесс через смеситель поз.Х2 для получения метаноловоздушной смеси.

Уровень в емкости поз.Е5 поддерживается (30-70)% отбором метанола, направляемого в смеситель поз.Х2.

Формалин массовой долей метанола не более 8% и формальдегида не более 50% забирается из куба колонны поз.К2, насосом поз.Н6/1-2, охлаждается в холодильнике поз.Т8 до температуры (40 - 65)°С и поступает в стандартизаторы.

Уровень в кубе колонны поз. К2 поддерживается (30 - 70)% отбором формалина в стандартизаторы.

В случае выхода из строя вакуум-насосов поз. Н6/1,2 ректификацию можно вести непродолжительное время под азотным дыханием с давлением 0,3 кгс/см2, но при этом возрастает кислотность формалина, и температура в кубе колонны поз. К2 будет (95 - 110)°С, а вверху – (60 - 66)°С.

Емкости поз.Е5 и газоотделители поз.Х7 соединены с "азотным дыханием" давлением 0,3 кгс/см2.

 



МАТЕРИАЛЬНЫЙ БАЛАНС

Материальный баланс в таблице 6.1.

 

Таблица 6.1 – Материальный баланс

Приход

 

 

Расход

 

 

Состав

кг/ч

Массовая доля,%

Состав

кг/ч

Массовая доля,%

1

2

3

4

5

6

Ректификация

 

 

 

 

 

1.Формалин-"сырец"

20425

100

1.Формалин-товарный

15833,33

100

в т.ч.:

 

 

в т.ч.:

 

 

формальдегид

5880,36

28,79

формальдегид

5858,33

37

метанол

5563,77

27,24

метанол

1108,33

7

вода

8980,87

43,97

вода

8866,66

56

 

 

 

2.метанол-ректификат

4591,67

100

 

 

 

в т.ч.:

 

 

 

 

 

метанол

4453,92

97

 

 

 

формальдегид

22,96

0,5

 

 

 

вода

114,79

2,5

итого

20425

100

итого

20425

100

Абсорбция

 

 

 

 

 

1.Контактные газы,

25302,74

100

1.формалин-сырец,

20425

100

 т.ч.:

 

 

в т.ч.:

 

 

формальдегид

5880,36

23,24

формальдегид

5880,36

28,79

метанол

5566,60

22

метанол

5563,77

27,24

вода

3228,63

12,76

вода

8980,87

43,97

углекислый газ

807,16

3,19

 

 

 

водород

146,76

0,58

2.Выхлопные газы,

12112,55

100

окись углерода

83,50

0,33

 в т.ч.:

 

 

азот

9589,74

37,9

азот

8461,83

69,86

 

 

 

водород

1480,15

12,22

2.Вода на орошение

7234,81

100

углекислый газ

591,09

4,88

 

 

 

окись углерода

96,90

0,8

 

 

 

вода

1482,58

12,24

итого

32537,55

100

итого

32537,55

100

Контактирование

 

объемная доля, %

 

 

1.Смесь воздух-

25302,74

100

1.Контактные газы,

25302,74

100

метанол, в т.ч.:

 

 

в т.ч.:

 

 

формальдегид

22,96

0,09

формальдегид

5880,36

23,24

метанол

12862,72

50,84

метанол

5566,60

22

вода

294,39

1,16

вода

3228,63

12,76

азот

8621,55

34,07

углекислый газ

807,16

3,19

кислород

3501,12

13,84

окись углерода

83,50

0,33

 

 

 

водород

146,76

0,58

 

 

 

азот

9589,74

37,9

итого

25302,74

100

итого

25302,74

100

Спиртоиспарение

 

 

 

 

 

1.Метанол "свежий",

8417,22

100

1.Смесь воздух-

25302,74

100

в т.ч.:

 

 

метанол,

 

 

метанол

8408,80

99,9

в т.ч.:

 

 

вода

8,42

0,1

формальдегид

22,96

0,09

 

 

 

метанол

12862,72

50,84

2.Метанол-ректиф.,

4591,67

100

вода

294,39

1,16

в т.ч.:

 

 

азот

8621,55

34,07

метанол

4453,92

97

кислород

3501,12

13,84

формальдегид

22,96

0,5

 

 

 

вода

114,79

2,5

 

 

 

 

 

объемная доля, %

 

 

 

3.Воздух,

12293,85

100

 

 

 

 в т.ч.:

 

 

 

 

 

кислород

2544,83

20,7

 

 

 

азот

9527,73

77,5

 

 

 

вода

221,29

1,8

 

 

 

итого

25302,74

100

итого

25302,74

100

 



ЕЖЕГОДНЫЕ НОРМЫ ОБРАЗОВАНИЯ ОТХОДОВ ПРОИЗВОДСТВА

Ежегодные нормы образования отходов производства 37%-го формалина в таблице 8.1.

 

Таблица 8.1 – Ежегодные нормы образования отходов производства 37%-го формалина

Наименование

отхода, аппарат

или стадия

образования

Характеристика, состав

Направление

использование,

метод очистки

или уничтожения

Нормы образования отходов

По проекту кг/т 1998г. кг/т
1 2 3 4 5
1. Выхлопные газы после аб- сорбционной колонны поз.К1 Состав, об. доля, %: - водород: 16-26; - окись углерода: не более 5,0; - двуокись углерода: не более 1,0; - кислород: не более 1,2; - метан: не более 1,0; - азот: по разности; - метанол: не более 7,0 г/м3; - формальдегид: не более 4,0 г/м3   Поступают на установку термического обезвреживания (УТО) 677,50 677,50
2. Факельная установка Продукты сгорания абгазов: - окисид углерода; - оксиды азота; - углеводороды   Рассеивание в атмосфере   0,2464 0,0369 0,0062   0,160 0,024 0,004
3. Дымовая труба Продукты термичес- кого обезврежива- ния абгазов: - оксид углерода; - оксиды азота; - метанол; - формальдегид Рассеивание в атмосфере     1,266 0,507 - -     0,0610 0,0052 0,0005 0,0003
4. Сточные воды от производства формалина     На очистные сооружения   0,3579   1,085
5. Отработан- ный катализа- тор (в персчете на серебро), г   Сдается на завод драгоценных металлов   6,98  

 

 

КОМПОНОВКА ОБОРУДОВАНИЯ

При размещении оборудования учитываются следующие технологические требования: удобство обслуживания оборудования и возможность демонтажа аппаратов и их деталей при ремонтах; обеспечение максимально коротких трубопроводов между аппаратами при необходимости самотека; рациональное решение внутризаводского транспорта. При этом необходимо соблюдать строительные нормы, требования естественной освещенности, технику безопасности и охрану труда, санитарные нормы [5].

Компоновка оборудования на открытых площадках сокращает капитальные затраты на строительство, уменьшает загазованности и влияние тепловыделений, снижает врыво- и пожароопасность. Установка аппаратуры на открытых площадках создает также предпосылки для укрупнения агрегатов, позволяет во многих случаях отказаться от членения на части (царги) аппаратуры (преимущественно колонной) и, кроме того, улучшает условия монтажа оборудования.

На открытых площадках химическая аппаратура устанавливается или на этажерках- железобетонных и металлических – или самостоятельно- на индивидуальных и групповых фундаментах. Аппараты малого диаметра и большой высоты устанавливаются в этажерках.

При размещении технологического оборудования на открытых площадках, руководствуются перечнем технологического оборудования химической промышленности, устанавливаемого на открытых площадках, и характеристикой климатического района.

Размеры пролетов, расположение разбивочных осей и высоты зданий принимаются по строительным нормам СниП-II-М2-62.

В зданиях и на открытых площадках для монтажа, эксплуатации, демонтажа и ремонта оборудования устанавливают подъемно-транспортные устройства.

Для технологического обслуживания большого количества и разнообразного по характеру оборудования, устанавливаемого на открытой площадке, требующей частой разборки или демонтажа, загрузки и выгрузки катализатора, применяются передвижные краны.

При размещении оборудования предусмотрены проходы, обеспечивающие безопасное обслуживание оборудования, движения людей и транспорта, а также удобную очистку рабочих поверхностей оборудования.

Машины и аппараты, обслуживаемые подъемными кранами, размещают в зоне приближения крюка крана.

Все насосы в насосном отделении, создающие на рабочих местах вибрации и шум, устанавливаются на специальных фундаментах.

Для выполнения работ по монтажу, демонтажу, чистке и замене трубных пучков подогревателей, холодильников, конденсаторов, коммуникаций предусматриваются соответствующие средства механизации.

Максимально механизирована загрузка и выгрузка ядовитых и взрывоопасных веществ, а также подача веществ в опасные зоны. В производстве исключены ручные операции при транспортировке и погрузочно-разгрузочных работах.

В качестве безрельсового транспорта применяются автопогрузчики, тележки, платформы.

При размещении оборудования руководствуются действующими правилами и нормами по технике безопасности, противопожарной безопасности, указаниями по выносу оборудования на открытые площадки в химической промышленности и другими действующими указаниями, правилами и нормами, обеспечивая нормальные условия обслуживающему персоналу и безаварийную работу оборудования

 

Производственная санитария

 

Воздушная среда характеризуется на химические загрязнения и метеоусловия. Характеристика химического загрязнения, ПДК и их влияния на организм человека, приведены в таблице 12.1.

Химические загрязнения представляют угрозу для жизни человека, для его здоровья и для окружающей среды. Чтобы предотвратить загрязнение, необходимо принимать меры по защите окружающей среды, а также меры коллективной и индивидуальной защиты.

 


Таблица 11.1 – Токсические свойства, ПДК, класс опасности сырья, полупродуктов, готовой продукции и отходов производства (ГН 2.2.4.586 – 98)

Наименование сырья, полупродуктов, готовой продукции, отходов производства

Класс опас-ности ГОСТ 12.1.007

-76

Характеристика токсичности (воздействие на человека)

ПДК вредных веществ в воздухе рабочей

зоны производственных помещений ГОСТ 12.1.005-88

 

1 2 3 4  
Метанол 3 Яд нервного и сосудистого действия с резко выраженным коммуля-тивным действием 5мг/м3  
Формалин (по формальдегиду) 2 Токсичен. Раздражает слизистые обо-лочки,вызывает дерматит. 0,5 мг/м3 по формальдегиду  
Едкий натр 2 При попадании на кожу вызывает ожоги 0,5 мг/м3 аэрозоль  
Надсмольная вода - Токсичность определяется содержанием в ней метанола и формальдегида    
Азотная кислота 3 При попадании на кожу вызывает химические ожоги 5мг/м3  
Азотнокислое серебро   Действует прижигающе на кожу и слизистые оболочки. Вызывает воспалительные заболевания кожи. При многолетней работе серебро накапливается в организме    
Окислы азота 3 Раздражают дыхательные пути, вызывают удушье, коньюктивиты и поражают роговицы глаз. 5мг/м3  

Выхлопные газы (абгазы)

3

Токсичность определяется содержанием формальдегида и метанола

29мг/м3

Природный газ (по метану)

3

Оказывает наркотическое действие

300мг/м3

 

Санитарная характеристика производственных зданий, помещений и наружных установок в таблице 12.2.

 

Таблица 11.2 – Санитарная характеристика производственных зданий, помещений и наружных установок

Наименование производственных зданий, помещений, установок.

Группа производственных процессов по санитарной характеристике

(СНИП 2 09 04-87)

Наружная установка 3-а  
Стандартизация формалина. 3-а  
Насосное отделение 3-а  
Воздуходувное отделение 1-б  
Теплопункт 1-б  
Факельная установка 3-б  

 

В связи с применением вредных и ядовитых веществ на производстве формалина, средства индивидуальной защиты и аварийный запас принят в соответствии с действующими отраслевыми нормами согласно ГН 2.2.5.686 – 99.

Средства коллективной защиты, в зависимости от назначения, делятся на следующие классы:

- средства нормализации воздушной среды производственных помещений и рабочих мест;

- средства нормализации освещения производственных помещений и рабочих мест;

- средства защиты от ионизирующих, инфракрасных, ультрафиолетовых и электромагнитных излучений;

- средства защиты от магнитных и электрических полей;

- средства защиты от излучения лазеров;

- средства защиты от шума, вибрации и ультразвука;

- средства защиты от поражения электрическим током;

- средства защиты от статического электричества;

- средства защиты от высоких и низких температур окружающей среды;

- средства защиты от воздействия механических, химических и биологических факторов.

Для индивидуальной защиты органов дыхания от вредных веществ используются противогазы марки А, БКФ, респираторы марки РПГ-67;А; КД. Противогазовый респиратор представляет собой резиновую полумаску с двумя резиновыми муфтами по бокам. В муфты вставлены сменные цилиндрические патроны из картона или пластмассы, снаряженные сорбентом. Респираторы снабжены патронами марок А и КД, каждый из которых используется строго по назначению.

Для защиты рук от агрессивных химических веществ применяют резиновые перчатки. Для защиты глаз применяют защитные очки, выпускаемые в соответствии с требованиями ГОСТ 12.4.013 – 85Е «Очки защитные».

В местах работы с кислотами и щелочами установлены аптечки с нейтрализующими растворами.

Средства защиты применяют для предотвращения или уменьшения воздействия на работающих опасных и вредных производственных факторов. К средствам защиты предъявляют следующие требования: они должны обеспечивать высокую степень защитной эффективности и удобство при эксплуатации; должны создавать наиболее благоприятные для человека соотношения с окружающей внешней средой и обеспечивать оптимальные условия для трудовой деятельности.

С целью защиты работающих от воздействия формалина, метанола, паров кислоты и щелочи производственные помещения снабжены системой приточной и вытяжной вентиляции.

В производственных помещениях и на открытых установках производства предусмотрены датчики сигнализации предельных концентраций углеводородов типа СТМ-10.

Все виды ремонтных работ и работ по обслуживанию оборудования производятся в спецодежде, спец.обуви и в каске.

 


Шумы и вибрация

Некоторые производственные процессы сопровождаются значительным шумом и вибраций. Источники интенсивного шума и вибрации являются машины и механизмы с неуравновешенными вращающимися массами, в отдельных кинематических парах которых возникают трение и соударения, а также технологические установки и аппараты, в которых движение газов и жидкостей происходит с большими скоростями и сопровождается пульсацией.

Повышение уровня шума и вибрации на рабочих местах оказывает вредное воздействие на организм человека.

В результате длительного воздействия шума нарушается нормальная деятельность сердечно-сосудистой и нервной системы, пищеварительных и кроветворных органов. Вибрация воздействует на центральную нервную систему, желудочно-кишечный тракт, органы равновесия, вызывает головокружение т.д.

Шум – это совокупность звуков различной частоты и интенсивности (силы), возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

При нормировании шумовых характеристик рабочих мест, как правило, регламентируют общий шум на рабочем месте независимо от числа источников шума в помещениях и характеристик каждого в отдельности.

″Санитарными нормами проектирования промышленных предприятий″ (ГОСТ 12.1.003-88) определены допустимые уровни параметров шума и вибрации. Норма составляет 80 дБ.

При постоянном шуме на рабочем месте нормируется уровень звукового давления (в дБ) октавных полосах частот со среднегеометрическими частотами 63, 125, 350, 500, 1000, 2000, 4000, 8000 Гц.

Наиболее шумным из помещений, где расположено оборудование производства формалина, является помещение воздуходувной, где уровень звукового давления во всех частотах превышает допустимые уровни для производственных помещений с постоянным пребыванием людей. Для воздуходувного отделения, где нет постоянного рабочего места и пребывание

человека в смену не превышает один час, применяются индивидуальные средства защиты антифоны, ″беруши″.

Вибрация – это колебания твердых тел – частей аппаратов, машин, оборудования, сооружений, воспринимаемые организмом человека как сотрясения. Часто вибрации сопровождаются слышимым шумом. Местная вибрация характеризуется колебаниями инструмента и оборудования, передаваемыми к отдельным частям тела. При общей вибрации колебания передаются всему телу от работающих механизмов на рабочем месте через пол, сиденье или рабочую площадку. Наиболее опасная частота общей вибрации лежит в диапазоне 6 – 9 Гц, поскольку она совпадает с собственной частотой колебаний внутренних органов человека, в результате чего может возникнуть резонанс.

Гигиенические допустимые уровни вибрации регламентирует ГОСТ 12.1.012 – 96 «Вибрация. Общие требования безопасности». Нормируемыми параметрами общих вибраций являются среднеквадратичные величины колебательной скорости в октавных полосах частот со среднегеометрическими значениями.

Согласно этим нормам, уровень вибрации оценивается по спектру виброскорости в диапазоне частот от 11 до 2800 Гц в октавных полосах частот со следующими среднегеометрическими значениями: 5; 16; 31; 63; 125; 250; 500; 1000; 2000 Гц.

Установлены предельно допустимые величины, ограничивающие общие вибрации: при частоте до 11 Гц – нормируемым параметром является смещение, при частоте от 11 до 355 Гц – виброскорость.

Для измерения вибрации применяются виброметры и шумомеры с дополнительным приспособлением – предусилителем, устанавливаемым вместо микрофона.

Одним из основных организационных мероприятий по борьбе с шумом и вибрацией является исключение из технологического процесса виброакустически-активного оборудования.

Основными техническими мероприятиями являются:

- правильное проектирование фундамента под нагнетатели воздуха с учетом динамических нагрузок;

- наличие виброоснования у вентиляционных установок;

- шумоглушение на всасывании и выхлопе вентиляционных систем.

С целью защиты обслуживающего персонала от шума и вибрации здания и сооружения выполнены согласно санитарным нормам, вентиляторы установлены на виброоснованиях и подсоединены к воздуховодам через мягкие вставки.

Защита от шума достигается качественным монтажом отдельных узлов машин, динамической их балансировкой и современным проведением планово-предупредительных ремонтов. Необходимо также своевременно проверять работу подшипников, устранять удары и биения деталей при возникновении зазоров в сочленениях, прочно закреплять кожухи, ограждения. Уменьшить шум на рабочих местах можно установкой звукопоглощающих конструкций близ источника шума или рабочего места. Конструкцию и материал звукопоглощающих облицовок выбирают, исходя из частотной характеристики шума и звукопоглощающих свойств материала.

Для защиты от вибрации широко используют вибропоглощающие и виброизолирующие материалы и конструкции. Виброизоляция – это снижение уровня вибрации защищаемого объекта, достигаемое уменьшением передачи колебаний от их источника.

 

Техника безопасности

1 1 .2.1 Техника безопасности при разработке генерального плана

Планировку промышленного района связывают с планировкой прилегающих районов города. Промышленные предприятия целесообразно проектировать объединенными в промышленные узлы с общими для предприятий вспомогательными производствами. Данное производство удобно расположено в плане источника сырья и сбыта готовой продукции.

Генеральные планы промышленных предприятий проектируют с соблюдением требованиям действующих СНиП, инструкций по разработке схем генеральных планов, санитарных норм проектирования промышленных предприятий, ГОСТов и других нормативных документов.

Производство формалина по противопожарным нормам Н-102-54 строительного проектирования относится к категориям «А» и «Б», а по санитарным нормам к классу I (воздуходувное отделение) и классу III (наружная установка). Ширина санитарно-защитной зоны 1000м.

Цех расположен на территории Томского Нефтехимического комбината и имеет подъездные пути с двух сторон.

По материалам инженерно-геологических изысканий грунты имеют следующую характеристику:

1) почвенный слой;

2) суглинок лессовидный – заболоченный;

3) грунтовая вода повсеместно на поверхности земли.

Грунтовые воды по отношению к бетону не являются агрессивными. Глубина промерзания грунта согласно НТУ-187-55 принимается 2,25 м от спланированной отметки территории комбината.

 

Электробезопасность

Электробезопасность – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, статического электричества.

Изоляция

Исправность изоляции – основное условие, обеспечивающее безопасность эксплуатации и надежность электроснабжения электроустановок. В электроустановках применяются следующие виды изоляций: рабочая изоляция – электрическая изоляция токоведущих частей, обеспечивающая нормальную работу электроустановки и защиту от поражения электрическим током; дополнительная изоляция – электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.

Регулярное наблюдение за состоянием изоляции электрических сетей – одна из основных мер, предотвращающих поражение человека электрическим током. Контроль сопротивления изоляции может быть периодическим и непрерывным. Сопротивление изоляции силовых и осветительных электропроводов должно быть не ниже 0,5 МОм.

Во взрывоопасных зонах всех классов с химически активными средами должны применяться провода и кабели с поливинилхлоридной изоляцией, а также провода с резиновой изоляцией и кабели с резиновой и бумажной изоляцией в свинцовой или поливинилхлоридной оболочке.

Чтобы обеспечить надежную работу электрооборудования в химически активных средах, необходимо исключить возможность проникновения химически активных реагентов в оболочки электрооборудования и применять специальные конструкционные материалы и защитные покрытия. Конструкция вводных устройств электрооборудования должна обеспечивать защиту токоведущих частей, изоляции и мест соединений от воздействия химически активных сред, для которых оно предназначено.

Статическое электричество

Заряды статического электричества могут возникнуть при соприкосновении или трении твердых материалов, при размельчении или пересыпании однородных и разнородных непроводящих материалов, при разбрызгивании диэлектрических жидкостей, при транспортировке сыпучих веществ по трубопроводам и др.

Продукты, используемые при производстве формалина имеют объемное сопротивление, что способствует возникновению статического электричества при их транспортировке, так как все трубопроводы и аппараты изготовлены из углеродистой и легированной стали.

Для предупреждения возможности накопления разрядов статического электричества на производстве формалина предусмотрены:

1. Заземление оборудования, трубопроводов.

2. Скорость транспортирования по трубопроводам метанола, формалина не должна превышать 10 м/с.

Одним из надежных методов снижения потенциалов статического электричества является заземление всех металлических частей оборудования, где возможна электризация. Заземлять следует не только те части оборудования, которые учавствуют в регенировании зарядов, но и все другие изолированные проводники, которые могут зарядиться по индукции.

Оборудование следует считать электростатически заземленным, если сопротивление в любой точке при самых неблагоприятных условиях не превышают 106 Ом.

Заземление

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам. Задача защитного заземления – устранение опасности поражения током в случае прикосновения к корпусу и другим токоведущим металлическим частям электроустановки, оказавшимся под напряжением.

Защита зданий, сооружений, оборудования, трубопроводов от прямых ударов молнии, осуществляется путем присоединения корпусов отдельных аппаратов к заземляющему устройству и установкой молниеприемников. Защита аппаратов и трубопроводов от статической индукции и статического электричества осуществляется присоединением к контуру заземления.

Система устройства заземления состоит из внутреннего и внешнего контуров.

Внешний контур выполнен из электродов, изготовленных из стальных вертикальных стержней длиной 2,5 м и соединенных между собой полосовой сталью (4х40) мм. Внутренний контур заземления выполнен из полосовой стали (4х25) мм, (4х40) мм и присоединен к внешнему. Все соединения заземляющего устройства выполнены сваркой.

Все электрооборудование, пусковая аппаратура, оборудование, трубопроводы, а так же все металлические части, нормально не находящиеся под напряжением, но могущие под таковым оказаться вследствие нарушения изоляции, заземлены присоединением к контуру.

Металлические вентиляционные короба и кожухи теплоизоляции трубопроводов также присоединены к внутреннему контуру защитного заземления.

Заземление кабельных конструкций осуществляется с помощью строительных металлоконструкций, на которых они установлены.

Колонные и емкостные аппараты заземлены в двух точках.

 

Пожаровзрывобезопасность

Для максимального ограничения количества горючих веществ, которые могут поступать в окружающую среду при аварийной разгерметизации системы, производства формалина разделено на блоки, каждый из которых должен быть отключен от технологической схемы запорной арматурой без опасных изменений режима, приводящих к развитию аварии в смежной аппаратуре.

Оценка взрывоопасности блоков производства формалина произведена в соответствии с "Общими правилами взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств" утвержденными Гостехнадзором СССР 06.09.88 г. АООТ "Сибхимпроект" (г.Новосибирск).

Расчетная категория взрывоопасности для всех блоков III, а так как формалин - вещество II класса опасности, то для всех блоков устанавливается II категория взрывоопасности в таблице 11.4.

 

Таблица 11.4 – Категории взрывоопасности для всех блоков

№ блока и наименование Границы блока Общий энергетический потенциал взрывоопасности Е,кДж Относительный энергетический потенциал взрываемости Категория взрывоопасности Радиус разрушения блока, м
1 2 3 4 5 6
1.Испарение метанола Испаритель поз.Е2а, теплообменник поз.Т2, перегреватель поз.Т2, огнепреградитель поз.Х3     7,67 107     25,7     III     5,5
2.Синтез формальдегида Реактор поз.Р1   2,35 107   25,7   II   2,8
3.Абсорбция формальдегида и метанола Абсорбционная колонна поз.К1   2,7 107   18,2   II   3,0
4.Охлаждение формалина Теплообменник поз.Х4, насос поз.Н3/1,2   1,0 107   13,0   II   1,5
5.Подача абгаза на сжигание Трубопроводов абгазов от абсорбционной колонны поз.К1   3,85 107   9,5   III   0,8
6.Ректификация формалина Ректификационная ко- лона поз.К2, сборник поз.Е5, вакуум-насос поз.Н7/1,2   3,03 107   18,9   II   3,3
7.Транспорти-ровка метанола в испаритель   Насос поз.Н6/1,2   2,3 107   17,2   III   2,8
8.Стандартиза-ция Стандатизатор 1,04 107 6,1 II -
9.Транспорти-ровка формалина Насос   0,78 107   5,7   II   0,23
10.Прием и подача метанола в процесс Трубопроводы мета- нала   5,06 107   22,4   III   4,2
11.Опорожне-ние метанола Емкость   4,88 107   4,8   II   0,18
12.Хранение формалина Емкость   5,06 107   22,4   II   1,6
13.Перекачива-ние формалина в емкостях и налив в ж/д цистерны Насосы   1,16 107   16,8   II   1,2

 

Пожаровзрывоопасные свойства сырья, полупродуктов, готовой продукции и отходов производства представлены в таблице 12.5.

 

Таблица 12.5 – Пожаровзрывоопосные свойства сырья, полупродуктов, готовой продукции и отходов производства (ГН 2.2.4.586 – 98)

Наименование сырья, полупродуктов, готовой продукции, отходов производства

Класс опас-ности ГОСТ 12.1.007

-76

Температура, °С

Концентрационный предел воспламенения

ВСП ВОСП

Само.

ВОСП.

Нижний

Верхний
1 2 3 4

5

6

7
Метанол 3 8 13

464

6

34,7
Формалин (по формальдегиду) 2 56-85 62-80

435

7

73
Едкий натр 2 - -

-

-

-
Надсмольная вода - 63 -

610

-

-
Азотная кислота 3

Не горючая. При контакте с горючими веществами вызывает их самовозгорание.

Азотнокислое серебро  

Не горючее

Окислы азота 3

Не горючие

Выхлопные газы (абгазы)

3

 

 

по водороду

500

4

75

по окиси углерода

610

12,5

74

Природный газ (по метану)

3

 

 

с воздухом

537

4,9

15,4

с кислородом

 

5,6

6,1

                   

 

Для обеспечения пожарной безопасности производство формалина оборудуется первичными противопожарными средствами согласно "Нормам первичных средств пожаротушения для производственных складских и жилых помещений".

Пожаротушение внутри помещений осуществляется от пожарных кранов, оборудованных рукавами и стволами - распылителями.

В помещении насосной предусмотрена автоматическая система пожаротушения, сблокированная с отключением вентиляции.

Для пожаротушения наружной установки предусмотрены лафетные установки и стояки – сухотрубы.

На лестничных клетках на входе в здание и у этажерки по периметру здания установлены пожарные извещатели.

Для обнаружения подачи сигнала пожарной тревоги, локализации и ликвидации возможного пожара, в насосной и на наружной установке предусмотрена установка автоматического пожаротушения. Огнегасящее вещество – тонко распыленная вода. Подача воды на установку осуществляется по трубопроводам из распределительного пункта по секциям.

Насосная формалина (секции 4-13, 26-28) обслуживается дренчерной установкой, которая приводится в действие автоматически или дистанционно (с ЦПУ), или вручную.

Наружная установка, секции (14-17), обслуживается до 30 м - лафетными стволами, а колонные аппараты выше 30 м – кольцами орошения. Секции (14-17) приводятся в действие дистанционно и вручную.

Узлами управления являются клапаны типа КМ и вентили с электромагнитным приводом.

Для хранения необходимого запаса воды предусмотрен резервуар емкостью 1000 м3.

До пожара элементы установок находятся в состоянии контроля, трубопроводы до узлов управления заполнены водой и находятся под давлением импульсного устройства, а от узлов управления до секций (4-17) - "сухотрубы".

Автоматический пуск установки: При возникновении пожара в секциях (4-13), (22-26) срабатывают электроизвещатели, и сигналы поступают на вскрытие вентиля с электромагнитным приводом и включение насосов. При вскрытии вентиля срабатывает узел управления установкой, пропуская огнетушащее вещество по трубопроводам через оросители на очаг пожара.

Дистанционный пуск установки: Производится от приемной станции ППС-1 в корпусе в случае, если не сработала автоматическая система пуска.

На пульте ППС-1 тумблер соответсвующей секции переводится в положение "дистанционное управление" и после нажатия кнопки "пуск" осуществляется дистанционное включение насосов, поступает сигнал на срабатывание электромагнитного вентиля, вскрывается соответсвующий клапан типа КМ-150 в распределительном пункте и поступает вода по трубопроводам через оросители на очаг пожара.

Ручной пуск осуществляется при отказе автоматического пуска и при проверке системы.

Для вызова пожарной части у входа в корпус производства формалина, на ЦПУ расположены пожарные извещатели и кнопки отключения приточной вентиляции. Взрывопожарная и пожарная опасность, санитарная характеристика производственных зданий, помещений и наружных установок в таблице 11.6.

 

Таблица 11.6 – Взрывопожарная и пожарная опасность производственных зданий, помещений и наружных установок

Наименование производственных зданий, помещений, установок.

Категория взрывопожар.и пожароопасности

помещений и зданий ОНТП 24-86

Классификация зон внутри помещений для выбора и установки электрооборудования

(ПУЭ)

Класс взрывоопасности или пожароопасной зоны Категория и группа взрывоопасных смесей
Наружная установка - В-1г 2В-Т1 2В-Т2 2А-Т2
Стандартизация формалина. - П-3 -  
Насосное отделение А В-1а 2А-Т2 2В-Т2
Воздуходувное отделение Д норм. -
Теплопункт Д норм. -
Факельная установка - В-1г 2В-Т2

 



ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

Мероприятия, связанные с охраной окружающей среды:

- охрану атмосферного воздуха от загрязняющих веществ;

- снижение концентрации загрязняющих веществ в сточных водах производства.

Твердых отходов в производстве формалина нет.

Охрана атмосферного воздуха

Возможными источниками загрязнения атмосферы являются:

- абсорбционная колонна поз.К1,

- вакуум-насосы поз.Н6 процесса ректификации,

- сальники насосов,

- воздушки от аппаратов,

- факельная установка,

- дымовая труба УТО,

- парк емкостей формалина и наливная эстакада,

- аппараты катализаторного отделения.

Выбросы формальдегида и метанола на производстве сведены до минимума.

Абсорбционные газы с верха колонны поз.К1 при стабильном ведении процесса получения формалина подаются на установку термического обезвреживания в водогрейные котлы КВГМ-10-150, где сгорают с выделением тепла.

Избыток выхлопных газов с узла абсорбции при работе и при аварии сжигается на факельной установке.

При остановке УТО в течение продолжительного времени возможно сжигание абсорбционных газов на факеле.

При пуске в атмосферу выбрасывается воздух с парами метанола. При остановке технологической нитки абгазы выбрасываются в атмосферу в течение 0,5 часа.

Инертные газы, содержащие метанол и формальдегид, от вакуум-насосов поз.Н6/1-2 направляются в верхнюю часть колонны поз.К1 и далее на сжигание.

Загрязнение воздуха от сальников насосов уменьшается ввиду использования герметичных насосов и насосов с двойным торцевым уплотнением.

Ко всем аппаратам с метанолом и формалином подведено "азотное дыхание", которое объединяются в общий коллектор и направляется на сжигание.

На складе формалина выбросы от "дыхания" емкостей, при приеме и перекачивании формалина, и выбросы с наливной эстакады при заполнении железнодорожных цистерн очищаются частично в ловушках. Выбросы в атмосферу в таблице12.1.

 

Таблица 12.1 – Выбросы в атмосферу

Аппарат,

диаметр и

высота выброса

Количество

источников

выбросов

Суммарный

объем от-

ходящих

 газов,

м3

 

Периодичность,

ч/сутки

Характеристика выбросов

Температура, °С Состав выброса Допустимое количество Нормируемых компонентов, кг/ч
1.Колонна абсорбци- онная поз.К1 Н-14 м, d-4 м 3 6660,0 6 ч/год 21 Формальдегид-4 г/м3 метанол – 7,0 г/м3, окись углерода – 50 г/м3 0,012 0,0082   0,0145
2.Факел поз.Ф1 Н-23,5 м, d-0,5 м 1 20000,0 24 20 Окись углерода -0,561 г/м3, оксиды азота - 0,084 г/м3, метан – 0,014 г/м3   11,232   1,6848 0,2808

Очистка сточных вод

Сточные воды от производства формалина, образующиеся при опорожнении промывке насосов, перед ремонтом собираются в подземную емкость и по мере заполнения передавливаются азотом в стандартизатор и далее в процесс.

Сточные воды от смыва полов через приямок у II технологической нитки направляются в химически загрязненную канализацию.

Ливневые стоки с отметок наружной установки через приямки технологических ниток направляются в ливневую канализацию.

Стоки от катализаторного отделения после предварительной нейтрализации растворенной азотной кислоты через подземную емкость направляются в химически загрязненную канализацию.

Стоки от продувки водогрейных котлов, содержащие соли жесткости (Na2CO3, СaCO3, МgCO3) направляются в ливневую канализацию.

Стоки от смыва полов на складе формалина направляются в химически загрязненную канализацию. Сточные воды в таблице 12.2.

 

Таблица 12.2 – Сточные воды

Наименова- ние стока Куда сбра- сывается Количес- тво стоков, м3/сутки Перио- дичность стоков Состав сбросов, мг/м Допустимое количество сбрасывае- мых вредных веществ, кг/сутки
1.Сточные воды от промывки насосов В емкость 0,5 Перио- дически 1 раз в 3 дня Формальдегид-2000 метанол - 2000 ДВП, мг/л формальде- гид 1,0, метанол-12,5
2.Сточные воды от смыва полов и ливневые стоки В химзаг- рязненную канализа- цию не более 20 м3, на операцию Перио- дически 2 раза в сутки Формальдегид-1860 метанол-1550 Формальде- гид-1,0, метанол-12,5

Твердые отходы

 

Твердые отходы в таблице 13.3.

Таблица 12.3 – Твердые отходы

Наименова-

ние отхода

Куда скла-

дируется

Коли-

чество

отходов

кг/сутки

Периодичность

образования

Характеристика отхода

Химический состав Физические показатели
1.Отработан- ный катали- затор «сере- бро на пемзе» Сдается на завод реге- нерации драгоцен- ных метал- лов   7,40 При перегрузках катализатора в реакторах 3 раза в год Металличес- кое серебро, нанесенное на гранулы пемзы, заг- рязненное сажей (мас- совая доля до 40%)  
2.Пемза раз- мером зерен менее 2 мм Сдается как строи- тельные отходы на полигон ТБО в р-не д.Михай- ловки 0,192 При просеивании гранулированной пемзы перед про- цессом наработки катализатора SiO2 до 74%, AlO+FeO+TiO до 24%, Mg н/б 3%, CaO н/б 5% Твердое ве- щество пем- за кусковая или грану- лированная

 



Производственные аварии

В связи с тем, что в производстве формалина используются взрыво- пожароопасные метанол и формальдегид, возможны аварийные ситуации, которые могут привести к разрушению зданий, сооружений, технологического оборудования и несчастным случаям с технологическим персоналом, разработан план ликвидации аварийных ситуаций. Все аварийные ситуации выходят на уровень А.

Межблочная арматура, которая используется в аварийных ситуациях, перекрывается дистанционно или вручную.

Расчетное время для закрытия межблочной арматуры – дистанционно 50 секунд, вручную – 2-5 минут.

Меры безопасности при ведении технологического процесса, и производственных операций

Работать только на исправном оборудовании с исправными приборами КИП и средствами автоматизации и управления. Работа на неисправном или негерметичном оборудовании может создать условия для прорыва горючих, токсических паров или газов и образования взрывоопасных смесей. Работа с неисправными приборами КИП может привести к значительному отклонению технологических параметров от норм, что, в свою очередь, может вызвать повышенную загазованность, взрыв или пожар.

Не допускать работы оборудования без ограждения движущихся частей и надежного заземления с целью защиты от статического электричества, грозы и вторичных проявлений молнии.

Технологический процесс вести только при нормально работающей вентиляции. Неисправность вентиляционных систем может привести к загазованности производственных помещений и, как следствие, вызвать отравление, пожар, взрыв.

Не допускать заполнения емкостей с ЛВЖ и ГЖ более, чем на 80 % объема во избежание проливов, утечек.

К работе с оборудованием, подведомственным органам Госгортехнадзора, допускаются лица, имеющие удостоверение о сдаче экзамена по "Правилам и безопасной эксплуатации сосудов, работающих под давлением".

Подвод азота, воздуха к аппаратам и трубопроводам для продувки осуществлять с помощью съёмных участков трубопроводов или гибких шлангов. Крепление шлангов к штуцерам производить с помощью хомутов.

Обслуживающий персонал должен находиться на рабочем месте в спецодежде установленной формы, иметь при себе индивидуальные средства защиты, знать расположение аварийных запасов противогазов и средств пожаротушения.

Курение, проведение постоянных огневых работ разрешается только в специально отведенных местах.

Возможные неполадки, аварийные ситуации и способы их ликвидации в таблице 13.1.

 

Таблица 13.1 – Возможные неполадки, аварийные ситуации и способы их ликвидации

Возможные неполадки, аварийные ситуации Причины возникновения Способы устранения
1 2 3
1.Понижение давления пара на паровом коллекторе или на РОУ 1.Неисправность клапана     2.Прекращение подачи пара с котельной 1.Отрегулировать давление пара вручную, открыв байпас на клапане 2.При снижении давле- ния пара менее 1,75 кгс/см2 произвести аварийную остановку отделения согласно инструкции Ц-2
2.Понижение давления оборотной воды менее 2 кгс/см2 Неисправность насоса или его остановка 1.Снизить нагрузку по воздуху на установку до (4000-5000) м3/ч 2.Включить резервный насос. При длительном отсутствии воды произвести аварийную остановку согласно инструкции Ц-2
3.Понижение напряжения в сети Кратковременное падение напряжения, менее 2 сек     2.Падение напряжения более 2 сек 1.Провести работоспособность всех эл.агрегатов. В случае отключения, произвести запуск 2.Произвести аварийную остановку отделения согласно инструкции Ц-2
4.Прекращение подачи метанола Неполадки в работе насосов Снизить нагрузку по воздуху до (4000-5000) м3/ч Откачать метанол из емкости (до уровня 30%) в испаритель поз.Е2а При длительном отсутствии метанола произвести аварийную остановку отделения согласно инструкции Ц-2
5.Массовая доля метанола в испарителе поз.Е2а менее 20% Неисправен уровнемер поз.LIRCSA-11 Увеличить расход метанола для получения заданной по регламенту концентрации, отрегулировав уровень визуально по стеклам Закрыть арматуру у уровнемера поз.LIRCSA-11 и проверить работу Контроль вести визуально по стеклам
6.Возникновение местного пожара Разгерметизация трубопроводов, оборудования (загорание пролитой жидкости) Выключить приточно-вытяжную вентиляцию. Закрыть окна и двери, если пожар произошел в помещении. Вызвать пожарную охрану по телефону или по пожарному извещателю. Вызвать газоспасательную службу. Приступить к тушению пожара первичными средствами пожаротушения. Порядок дальнейших дейст-
    вий определяется согласно «Плана ликвидации аварийных ситуаций».

 

Стихийные бедствия

Чтобы землетрясение и наводнение не наносили урон технологическому оборудованию, следует повышать механическую прочность вновь строящихся зданий и сооружений. Это достигается соответствующей планировкой, а также применением более прочных конструкций и материалов. Построенные здания и сооружения для повышения их прочности могут усиливаться металлическими стойками и балками. Кроме того, необходимо стремиться к уменьшению высоты производственных зданий.

Большинство толстостенных реакционных и ректификационных колонн, аппаратов довольно устойчивы к воздействию ударной волны. Наиболее характерным повреждением является их опрокидывание.

Емкости и хранилища, установленные внутри и снаружи зданий могут быть сброшены с фундаментов или разрушены вследствие отрыва днища или разрыва по швам. Наиболее эффективный способ повышения устойчивости этих сооружений – заглубление их на высоту с усилением крепления.

Емкости с сжиженными или газообразными веществами, находящиеся под давлением, устанавливают на фундаменты с глубокими гнездами и мощной анкеровкой. Штуцера таких емкостей защищают стальными колпаками.

Здания цехов, оборудование, емкости могут обкладываться мешками с песком для защиты от поражающих факторов землетрясения и падающих обломков разрушающих конструкций.

При строительстве новых предприятий необходимо предусматривать, чтобы запасы сильнодействующих и легколетучих веществ были рассредоточены по территории завода.

Для быстрой ликвидации последствий разлива ядовитых жидкостей необходимо заблаговременно создать запасы дегазирующих веществ и воды вблизи хранилищ.

Гражданская оборона

Гражданская оборона представляет собой систему общегосударственных мероприятий, осуществляемых в мирное и военное время для защиты населения и народного хозяйства от оружия массового поражения и других средств нападения противника, а также для проведения спасательных и неотложных аварийно-восстановительных работ в очагах поражения.

Необходимо повысить огнестойкость зданий и сооружений. Для этого здания и сооружения выполняют из железобетона. В целях уменьшения разрушения все основное оборудование расположено на открытой площадке на фундаментах. Компоновка выбрана так, что аппараты с веществами, представляющими наибольшую опасность, расположены на максимальном расстоянии от места нахождения персонала.

Повысить устойчивость зданий и сооружений можно следующим образом:

- увеличить механическую прочность зданий и сооружений установкой железобетонных каркасов, усилением металлическими балками и стойками;

- повысить устойчивость наиболее важных сооружений. Для этого их необходимо строить заглубленными или с уменьшением площадью стен и высотностью, что значительно увеличивает сопротивляемость их ударной волне.



Анализ среды предприятия

Потребитель

 1.1 Отрасль: производство карбамидоформальдегидных смол.

1.2 Текущее состояние этой отрасли: состояние роста.

1.3 Размер предприятия: крупное.

1.4 Тип производства: массовое.

 1.5 Потребность в оборудование и уровень автоматизации производства:

оборудование предприятия не нуждается в модернизации, производство полностью автоматизировано.

Конкуренты.

2.1 г.Томск Нефтехимический завод, Новомосковский химический завод.

 

 

ККС > 1, предприятие конкурентоспособно.

Итого

251679786

252827686

253960286

 

 

Планирование себестоимости продукции

Калькуляция себестоимости 1 тонны продукции в таблице 15.2

 

Таблица 15.2 – Калькуляция себестоимости 1 тонны продукции Nгод = 184228,16 тонн/год (на 1 год)

№ п/п

Наименование статей расхода

 

 Затраты, тыс.руб

 

 

 

 

 

На 1 тонну

На N год

1

Сырье и основные материалы

 

1,08020

199002,94

2

Энергия всех видов

 

 

0,44818

82567,66

3

Заработная плата основных рабочих

0,01969

3627,83

4

Единый социальный налог

 

0,00512

943,24

5

Расходы на содержание и эксплуатацию

 

 

 

оборудования (РСЭО)

 

 

0,05217

9611,99

5.1.

Амортизация активной части основных фондов (АЧОФ)

0,03372

6212,35

5.2.

Затраты на ремонт АЧОФ

 

0,00169

310,62

5.3.

Заработная плата вспомогательных рабочих

0,01331

2451,60

5.4.

Единый социальный налог

 

0,00346

637,42

6

Цеховые расходы

 

 

0,14985

27607,07

6.1.

Амортизация пассивной части основных фондов (ПЧОФ)

0,01599

2945,28

6.2.

Заработная плата ИТР, МОП, руководителей

0,06376

11746,94

6.3.

Единый социальный налог

 

0,01658

3054,20

6.4.

Охрана труда и техника безопасности

0,01451

2673,96

6.5.

Вода на бытовые и хозяйственные нужды

0,02160

3979,49

6.6.

Отопление помещений

 

 

0,01688

3110,40

6.7.

Освещение помещений

 

 

0,00053

96,80

7

Цеховая себестоимость

 

 

1,75522

323360,73

8

Общезаводские расходы

 

0,35104

64672,15

9

Заводская себестоимость

 

2,10626

388032,88

10

Коммерческие расходы

 

 

0,26474

48772,01

10.1.

Реклама

 

 

 

0,00145

267,90

10.2.

Сбыт продукции

 

 

0,26328

48504,11

11

Проценты за кредит

 

 

0,57098

105190,45

 

Полная себестоимость, вт.ч.:

 

2,94198

541995,33

 

Условно-переменные затраты

 

1,79166

330074,72

 

Условно-постоянные затраты

 

0,57934

106730,17



Расчет заработной платы

На предприятиях химической промышленности в зависимости от условий труда и степени вредности производства длительность рабочего дня составляет 12 часов. Поэтому возникает потребность в организации постоянной работы. Для этого на заводе организована 2-х сменная работа и составляется график сменности, т.к. работает 4 бригады (А, Б, В, Г) с дополнительными днями отдыха.

График сменности рабочих представлен в таблице 15.3

 

Таблица 15.3 - График сменности рабочих

Смена

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
пн вт ср чт пт сб вс пн вт ср чт пт сб вс пн
А 8 8       12 12   8 8       12 12
Б       12 12   8 8       12 12   8
В   12 12   8 8       12 12   8 8  
Г 12   8 8       12 12   8 8      

 

Примечание 2: 12 – смена, работающая с 8.00 до 20.00, 8 – смена, работающая с 20.00 до 8.00.

Из графика сменности можно рассчитать величину сменооборота:

 

; (15.8)

 

где,  - длительность сменооборота;

 - количество бригад;

 - количество дней, в течение которых бригада работает одну смену.

 

.

 

Сменооборот позволяет нам определить количество выходных дней:


; (15.9)

 

где,  - количество выходных за год;

 - время календарное;

 - количество выходных за один сменооборот.

 

 

Зная количество выходных за год, можно определить эффективное время работы за год:

 

, (15.10)

 

где,  - эффективное время рабочего;

 - количество невыходов.

 

Тэфф = 365 – 182,5 – 28 – 10 = 144,5 дня.

 

Рассчитаем количество эффективного времени в часах:

 

Тэфф = 144,5 12 = 1734 часов.

 

Таблица 15.4 – Баланс эффективного времени одного среднесписочного работника

№№ п/п

 Показатели

 

 

Дни

Часы

1

Календарный фонд рабочего времени

 

365

4380

2

Нерабочие дни

 

 

 

 

 

 выходные

 

 

 

182,5

2190

 

 праздничные

 

 

 

 

3

Номинальный фонд рабочеого времени

 

182,5

2190

4

Планируемые невыходы

 

 

 

 

 

 очередные и дополнительные отпуска

 

28

336

 

 невыходы по болезни

 

 

10

120

 

 декретные отпуска

 

 

 

 

 

 отпуск в связи с учебой без отрыва от

 

 

 

 

 производства

 

 

3

36

 

 выполнение гос. обязанностей

 

7

84

5

Эффективный фонд рабочего времени

 

144,5

1734

 

время ночной работы, tнв

 

 

91

1092

 

количество праздников в году, Тпраз

 

12

144

 

количество дней невыходов на работу, Дн

 

38

456

             

МАТЕРИАЛЬНЫЙ РАСЧЕТ

Целью материального расчета является составление материальных балансов стадии образования метаноло-воздушной смеси, контактирования, абсорбции и ректификации.

Расчеты проводим для получения формалина с массовой долей формальдегида 37 % для одной технологической нитки.

Рис. 16.1 Блок – схема материальных потоков 1 – приготовление метаноло - воздушной смеси; 2 – контактирование; 3 – абсорбция; 4 – ректификация.

 

G1 – воздух;

G2 – метанол со склада;

G3 – спирто - воздушная смесь;

G4 – контактные газы;

G5 – вода на орошение;

G6 – абсорбционные газы;

G7 – формалин – ″сырец″;

G8 – продукционный формалин;

G9 – метанол – ректификат.

Исходные данные

Годовая производительность одной технологической нитки производства - 126666,6 тонн, годовой фонд рабочего времени – 8000 ч.

 Массовая доля формальдегида, (%):

- в продукционном формалине, 374;

- в формалине – «сырце», 28,79.

Потери формальдегида на стадиях производства – 0,4%.

Степень конверсии метанола – 0,665.

Доля превращенного метанола:

 по реакции 1 – 0,26;

 по реакции 2 – 0,6;

 по реакции 3 – 0,12;

 по реакции 4 – 0,02;

Протекающие реакции:

 

1) CH3OH → CH2O + H2;

2) CH3OH + ½O2 → CH2O +H2O;

3)CH3OH + 1,5O2 → CO2 + 2H2O;

4)CH3OH → CO + 2H2.

 

Часовая производительность колонны ректификации (по формалину):

 

 

по формальдегиду:

 

 

или 195,28 кмоль/ч.

M(CH2O) = 30 г/моль.

С учетом потерь необходимо получить в контактном аппарате формальдегида кг/ч или 196,06 кмоль/ч.

 

ТЕПЛОВОЙ РАСЧЕТ

Рис.17.1 – Схема теплового баланса контактного аппарата.

Qпр = G1Cp1t + G2Cp2t + G3Cp3t + G4Cp4t + G5Cp5t; (17.1)

Qрасх = G6Cp6t + G7Cp7t + G8Cp8t + G9Cp9t + G10Cp10t + G11Cp11t + G12Cp12t 17.2)

 

1. Стадия синтеза

 Приход:

а) теплота реакции дегидрирования;

б) теплота реакции окисления;

в) теплосодержание спирто-воздушной смеси.

Расход:

а) теплосодержание реакционных газов на входе из зоны контактирования;

б) теплопотери в окружающую среду.

Приход:

а) на реакцию дегидрирования расходуется CH3OH = 5787,88 кг/ч;

 

1) CH3OH → CH2O + H2.

 

б) на реакцию окисления расходуется CH3OH = 7074,84 кг/ч;

2) CH3OH + ½O2 → CH2O + H2O.

 

Тепловой эффект реакции при 20оС (293К):

реакции (1) – (-9791,18 Вт);

реакции (2) – 492840Вт [1 с. 448];

Определим тепловой эффект реакции при 650оС (923К):

 

 Q923 = Q923 + ά (T – 293) + β (T2 – 2932) + j (T3 – 2933);(17.3)

 

где, Т – температура реакции;

β – алгебраическая сумма коэффициентов деленная пополам;

ά – алгебраическая сумма коэффициентов из выражений молярных теплоносителей веществ;

j – алгебраическая сумма коэффициентов деленная на три [1 с. 450].

Тепловой эффект реакции дегидрирования – (-12782,14 Вт).

Тепловой эффект реакции окисления – 24837901,83 Вт.

в) теплосодержание спирто-воздушной смеси при 100°С определяем из уравнения:

 

 (17.4)

 

где, Ср – теплоемкость, [Дж/кг К] [1 с. 471];

G – массовый расход, кг/ч [таблица 13].

 

Qс.в.с. = 3299796 Вт.

 

Расход:

а) теплосодержание контактных газов при 650оС

 (17.5)

 

где, Ср – теплоемкость, Дж/кг К;

 

Qк.г. = 26505323 Вт.

 

б) материальный баланс стадии контактирования:

 

Qс.в.с. + Qp = Qк.г. + Qпот;(17.6)

Qp = -12782,14 + 24837901,83 = 24825119,69 Вт.

 

Теплопотери определяются по разности:

 

Qпот = Qс.в.с. + Qр – Qк.г;. (17.7)

Qпот = 3299796 + 24825119,69 – 26505323 = 1619592,69 Вт;

что, составит:

 

от прихода тепла.

2. Количество воды на охлаждение контактных газов в подконтактном холодильнике: теплосодержание газов на входе в холодильник, Qк.г. = 26505323 Вт.

Температуру газов на входе из холодильника принимаем 180оС, определяем теплосодержание газов при 180оС.


 

Всего: i = 5416347,534 Вт.

Количество теплоты, принятой водой в холодильнике составляет:

 

Qохл = 26505323 – 5416347,534 = 21088975,47 Вт.

 

Отсюда определяем расход воды на охлаждение:

tвх = 90оС (конденсат);

tвых = 123оС (пар Р = 0,2МПа).

 

 (17,8)

GH2O = 37966,56 кг/ч = 10,5 кг/с.

 

3. Абсорбция

Приход:

а) количество тепла приходящего с контактными газами:

 

Qк.г. = 5416347,53 Вт;

 

б) тепло приходящее с оросительной водой при 20°С:

 

 (17.9)

где, Ср – теплоемкость воды (кДж/кг К).

 

 

в) количество тепла процесса абсорбции:

 

 (17.10)

 

Расход

а) количество тепла, уходящее с выхлопными газами, при 20°С:

 

 (17.11)

 

где, G – массовый расход (кг/ч);

Ср – удельная теплоемкость (кДж/кг К); t – температура (° С).


 

б) количество тепла, уходящее в окружающую среду (принимаем 2 % от прихода тепла):

 

 

в) количество теплоты, принятое хладоагентом теплообменников (встроенных и выносных)

 

 (17.12)

где, Qф.с. – количество тепла, уходящее с формалином-″сырцом″ и рассчитывается по формуле:

 

 (17.13)

4. Ректификация

Тепловой баланс:

 

 (17.14)

 

где, Qф.с. – тепло формалина-″сырца″;

Q8 – тепло формалина стандартного;

Q9 – тепло формалина-″сырца″; Qрект. – тепло процесса ректификации.

 





ГИДРАЛИЧЕСКИЙ РАСЧЕТ

Целью расчета является определение величины гидравлического сопротивления.

Исходные данные:

внутренний диаметр обечайки – 3 м;

количество труб – 24,75 d = 38×2 мм;

длина – 5 м;

диаметр внутренний входного штуцера – 0,15 м;

диаметр внутренний выходного штуцера – 0,6 м;

количество перегородок в межтрубном пространстве – 3 (шт).

Расход воды – 8,7 кг/с при tср 106,5оС, ρ = 854 кг/м3.

Расход контактного газа – 7 кг/с при tср = 415оС, ρ = 0,487 кг/м3.

Высота слоя катализатора – 0,6 мм.

Общее гидравлическое сопротивление определим по формуле:

 

∆Р = ∆Рк.ап. + ∆Ртр, (19.1)

 

где, ∆Рк..ап. - гидравлическое сопротивление слоя катализатора, Па;

 ∆Ртр – гидравлическое сопротивление трубного пространства подконтактного холодильника, Па.

 

 (19.2)

 

где, f – функция Re, для турбулентного режима и насыпной насадки f = 3,8/Re0,2;

ε – порозность слоя, ε = 0,4;

g0 – удельная массовая скорость газа, рассчитанная на сечение пустого аппарата, кг/м2с.


 (19.3)

 

ρг – плотность газа, кг/м3;

g – ускорение свободного падения – 9,81 м/с;

Re – 4238,19 [технологич. pасчет].

 

 (19.4)

 

∆Ртр = ∆Р1 + ∆Р2, Па(19.5)

 

где, ∆Р1 – потеря давления на входе в трубки, в трубках, на выходе из них, Па;

∆Р2 – потеря давления на входе в выходной патрубок, Па.

 

 (19.6)

 

Коэффициент сопротивления на входе в трубку принимаем ε1 = 0,5 d = 38×2 мм, Re = 4238,19.

Относительная шероховатость:

 

 (19.7)

 

Размер выступов шероховатости принимаем равным 0,1 мм.

Коэффициент трения λ для Re = 4238,19 и l/d = 0,0029 находим

[7, с. 445], λ = 0,045.

Коэффициент сопротивления на входе из трубок принимаем 0,5 – εn.

 

 

 (19.8)

 (19.9)

∆Ртр = 117,98 + 572,3 = 690,28 Па;

∆Р = 3,43 + 690,28 = 693,71 Па.

 

Определение гидравлического сопротивления межтрубного пространства подконтактного холодильника [1, с. 446, рис. 3]:

 

 (19.10)

 

где, D – внутренний диаметр кожуха, м;

n – число перегородок в межтрубном пространстве;

ω – скорость движения жидкости, м/с;

dэ – эквивалентный диаметр межтрубного пространства, dэ = 0,0334;

ρ – плотность жидкости, кг/м3;

λ – коэффициент трения, λ = 0,6 [1, с. 446].

 

 

Затраты давления на подъем охлаждающей жидкости:

 

 (19.11)


∆Pпод =  = 112304,88 Па;

∆Р = ∆Рм.тр. + ∆Рпод. = 26,42 + 112304,88 = 112331,3 Па. (19.12)

 





МЕХАНИЧЕСКИЙ РАСЧЕТ

Цель расчета – определение размеров отдельных элементов, обеспечивающих безопасную эксплуатацию аппарата за счет установочной механической прочности, плотности расчетных соединений, устойчивости к сохранению формы и необходимой долговечности.

Расчет диаметра патрубков

Подбор патрубков и фланцев будем проводить по условному проходу и условному давлению.

Расчет диаметра патрубков рассчитывается по формуле:

 

 (20.1)

 

где, G – расход продукта, кг/ч;

ω – скорость движения продукта, м/с;

ρ – плотность продукта, кг/м3.

Значение скоростей движения продуктов в таблице 20.1 [1, с.100].

Таблица 20.1 – Значение скоростей движения продуктов

Продукты Назначение патрубка Температура, оС Плотность, кг/м3 Скорость, м/с Расход, кг/с
Конденсат Конденсат вход выход 90 123 996 954 1,6 50 10,5 10,5
Спирто – воздушная смесь Контактные газы   вход     выход   100     180   0,940     0,818   30     30   7     7

 

Результаты расчета в таблице 20.2.

 

Таблица 20.2 – Результаты расчета

Продукты Диаметр по расчету, м Принятый диаметр, м
Конденсат Конденсат Спирто – воздушная смесь Контактные газы 0,168 0,0918 0,563 0,739 0,2 0,1 0,6 0,8

 

Диаметры патрубков принимаем согласно ГОСТ 28759.2 – 90.

Основные размеры подобранных фланцев к патрубкам в таблице 20.3.

 

Таблица 20.3 – Основные размеры подобранных фланцев к патрубкам

Пат-ру- бок   D   D1   D2   D3   D4   D5   S   h   h0   d   Z   a   a1
1 100 205 170 148 108 - - 11 4 16 8 - -
2 200 315 280 258 219 - - 15 4 16 4 - -
3 600 720 680 644 652 643 8 30 - 23 24 14 12
4 800 920 880 842 852 841 8 35 - 23 32 14 12

 

Для входа и выхода конденсата используют плоский-приварной фланец, а для входа спирто-воздушной смеси и выхода контактных газов - тип фланцевого соединения ″шип-паз″.



Расчет крышки аппарата

Исходные данные:

материал – сталь 12Х18Н10Т;

нормативное допускаемое напряжение σдоп =  = 113 МПа.

Исполнительная толщина стенки:

 

 (20.16)

 (20.17)

 

Допускаемое давление:

 

 (20.18)

 


Применимость формул:

 

 (20.19)

 (20.20)

 

Условия прочности обеспечены.

Выбираем тип конструкции крышки:

сварная стальная при Рдоп ≤ 25 кг/см2 [77, с. 569, рис. 23.10].

 


Расчет опорных лап

Контактный аппарат по конструкции представляет собой вертикальный цилиндрический аппарат, установленный на открытой площадке. В таких случаях применяются опоры, которые размещаются снизу аппарата

Расчет опорных лап проводим по максимальной силе тяжести аппарата при заполнение его водой для проведения его гидравлического испытания.

Определим массу аппарата.

Вес обечайки реактора и подконтактного холодильника:

 

 (20.30)

 

где, Dн и Dв наружный и внутренний диаметры обечайки, м;

Dн = Dв + 2S = 3,0 + 2 0,009 = 3,018 м.

j = 7900 кг/м3 – плотность стали 12Х18Н10Т;

j = 7800 кг/м3 – плотность стали 02Г2С.

 

 (20.31)

 (20.32)


 Вес трубных решеток:

 

 

Вес днища и крышки стандартен и равен:

 

Gд = 217 + 217 = 434 кг.

 

Вес люков стандартен и равен:

 

Gл =  = 1216 кг.

 

Вес патрубков стандартен и равен:

 

Gп = 104 + 163 + 8,31 + 4,15*2 = 283,61 кг.

 

Вес фланцев обечаек стандартен и равен:

 

Gф = = 3184 кг.

 

Вес труб холодильника:

 

Gтр =  (20.33)

 

где, ά – высота трубки, масса одной трубы равна 0,63 кг;

 

Gтр =  = 7821 кг.


Вес теплоизоляции обечайки теплообменника:

 

 (20.34)

 

где, Dв.из. и Dн.из. – диаметры внутреннего и внешнего слоя изоляции;

Н – высота изоляционной части.

 

Dн.из. = Dв.из. +  = 3,018 +  = 3,306 м. (20.35)

 

j1 – плотность асбеста, j1 = 350 кг/м3.

 

 

Общий вес аппарата:

 

∑G = 24435,18 кг = 24,44 тонны.

 

Определим массу воды в аппарате:

 

 (20.36)

 

где, Н – высота аппарата;

jH2O – плотность воды.

 


Максимальная масса аппарата:

 

 (20.37)

 

Определим расчетную толщину ребра опоры:

 

 (20.38)

 

где, G – максимальная масса аппарата, кг;

n – число лап (n = 4);

z – число ребер в одной лапе (z = 2);

σс – допускаемое напряжение на сжатие принимаем σс = 1000 кгс/см2;

l – высота опоры, принимаем l = 0,2 м.;

k – коэффициент, k = 0,6.

 

Sоп. = 0,01826 [м] = 18,26 [мм].

 

Определим высоту лапы:

 

 (20.39)

 

Проверка: l/13 ≤ 0,019 [м].

0,2/13 = 0,015 ≤ 0,019.

 

Следовательно, Sоп определяем расчетной.

Общая длина сварного шва.

Lш. = 4 (h + Sоп.) = 4 (0,4 + 0,01826) = 1,673 м (20.40)

 

Прочность сварного шва:

 

G/n ≤  (20.41)

 

где, hш – катет сварного шва, 0,008 м;

 τш.с. – допускаемое напряжение материала на срез, 800 кг/см2.

 

19539,1 ≤ 74950,4.

 

Условия прочности выполнены. Принимаем опору ГОСТ 26 – 467 – 82.

 






ЗАКЛЮЧЕНИЕ

Проведенные расчеты показали, что у производственных мощностей, реакторов и аппаратов есть весьма солидный технологический запас по увеличению мощности производства. На примере одной технологической нитки были проведены материальный, тепловой расчеты, а также поверочные расчеты вспомогательного оборудования. Большим плюсом оказалось, что увеличение мощности производства не требует внедрения нового оборудования или замены существующего, а следовательно и не понесет за собой практически никаких убытков. Экономические расчеты показали, что увеличение мощности производства формалина снижает себестоимость продукции, что делает продукцию конкурентоспособной. Это, в свою очередь приведет к увеличению прибыли от реализации.

 



СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1 Огородников С.К. Формальдегид. – Л: Химия, 1984. – 280 с.

2 Технологический регламент производства формалина ″Завода формалина и карбосмол″ Томского Нефтехимического комбината.

3 Лебедев Н.Н. Химия и технология основного и нефтехимического синтеза: Учебник для вузов. – М: Химия, 1981. – 608 с.

4 Охрана труда в химической промышленности. Под ред. Г.В. Макарова. М: Химия, 1989. – 476 с.

5 Криницына З. В. Менеджмент. Томск ТПУ, 2002. – 54 с.

6 Иванов Г.Н., Ляпков А.А., Бочкарев В.В. Учебное пособие – Томск: изд. ТПУ – 2002. – 113 с.

7 Гутник С.П. Расчеты по технологии органического синтеза. М: Химия, 1988. – 272 с.

8 Справочник нефтехимика. Под ред. С.К. Огородникова – Л: Химия, 1978. Т.2. – 592 с.

9 Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского М: Химия 1991. – 496 с.

10 Павлов. К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. – Л: Химия, 1987. – 576 с.

11 Лащинский А.А., Толчинский А.Р. Основы конструирования и расчета химической аппаратуры. Справочник. – Л: Машиностроение, 1970. – 752 с.

12 Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче. – М: Энергия, 1969. – 264 с.

13 Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. – М: Наука, 1972. – 653 с.

14 Иоффе И.Л. Проектирование процессов и аппаратов химической технологии: Учебник для техникумов. – Л: Химия, 1991. – 352 с.

15 Основы проектирования. Под ред. Лащинского А.А. – М: Химия, 1971. – 466 с.

16 Бочкарев В.В., Ляпков А.А. Основы проектирования предприятий органического синтеза. Методические указания к выполнению дипломного проекта. – Томск: ТПУ, 2002. – 52 с.

17 Анурьев В.И. Справочник конструктора – машиностроителя. М: Машиностроение, 1980. Т.3. – 557 с.

18 Викторов М.М. Методы вычисления физико-химических величин и прикладные расчеты: Л: Химия, 1977. – 360с.

РЕФЕРАТ

Дипломный проект состоит из 186 страниц, 36 таблиц, 2 рисунка, 19 источников и 8 листов графического материала.

Тема дипломного проекта: ″Проект производства формалина″.

Цель проекта: довести мощность одной технической нитки до 126666 тонн/год и выполнить необходимые расчеты основного оборудования.

В дипломном проекте произведены: материальный, тепловой, технологический, механический, гидравлический расчеты при изменении производительности на основе существующих мощностей.

Рассмотрены вопросы выбора технологической схемы, безопасности и экологичности проекта, охраны окружающей среды, организации и экономики производства.

Итог дипломной работы: имеющееся оборудование справиться с новой нагрузкой и не требует замены. С увеличением мощности производства, себестоимость единицы продукции формалина снизилась, что привело к увеличению прибыльности производства.



СОДЕРЖАНИЕ

Введение

1. Технико-экономический уровень и обоснование основных технических решений

2. Характеристика производимой продукции

2.1 Характеристика исходного сырья, материалов и полупродуктов

3. Физико-химические основы технологического процесса

4. Выбор и обоснование технологического процесса

5. Описание технологического процесса и схемы

5.1 Получение метаноло-воздушной смеси

5.2 Синтез формальдегида

5.3 Получение формалина-″сырца″

5.4 Ректификация формалина-″сырца″

6. Материальный баланс

7. Ежегодные нормы расхода основных видов сырья, материалов и энергоресурсов

8. Ежегодные нормы образования отходов производства

9. Нормы технологического режима

10. Компоновка оборудования

10.1 Характеристика производственных помещений

11. Безопасность и экологичность проекта производства формалина

11.1 Производственная санитария

11.2 Техника безопасности

12. Охрана окружающей среды

12.1 Охрана атмосферного воздуха

12.2 Очистка сточных вод

12.3 Твердые отходы

13. Защита человека в чрезвычайных ситуациях

13.1 Производственные аварии

13.2 Стихийные бедствия

14. Организация и экономика производства

15. Материальный расчет

15.1 Материальный баланс стадии ректификации

15.2 Материальный баланс стадии абсорбции

15.3 Материальный баланс стадии контактирования и спиртоиспарения

16. Тепловой расчет

17. Технологический расчет основного аппарата

17.1 Технологический расчет реактора

17.2 Технологический расчет подконтактного холодильника

18. Гидравлический расчет

19. Механический расчет

19.1 Обоснование конструкции основного аппарата

19.2 Выбор материала основных элементов аппарата

19.3 Расчет диаметра патрубков

19.4 Расчет толщины стенок обечайки и днища

19.5 Расчет толщины днища подконтактного холодильника

19.6 Расчет укрепления отверстий

19.7 Расчет крышки аппарата

19.8 Расчет трубной решетки подконтактного холодильника

19.9 Расчет тепловой изоляции

19.10 Расчет компенсатора подконтактного холодильника

19.11 Расчет опорных лап

20. Подбор вспомогательного оборудования

Заключение

Список используемой литературы

Спецификация



ВВЕДЕНИЕ

Среди многих сотен тысяч органических соединений, известных в настоящее время, формальдегиду, принадлежит особая роль.

Формальдегид – весьма активное химическое соединение, легко вступающее в реакцию с другими веществами с образованием большого класса новых соединений, многие из которых обладают важными свойствами. Благодаря реакционной способности формальдегид за сравнительно короткий промежуток времени превратился в один из незаменимых полупродуктов многотоннажного органического синтеза.

Формальдегид используется в промышленности в качестве сырья для производства синтетических смол, пластических масс, новых органических красителей, поверхностно-активных веществ, лаков, лекарственных препаратов и взрывчатых веществ. В сельском хозяйстве для протравления семян, в кожевенной промышленности для дубления кожи, в медицине как антисептическое средство и в животноводстве. Круг применения формальдегида растет из года в год. В связи с этим растет и его производство.

В настоящее время основным потребителем формальдегида является промышленность синтетических смол: производство фенолформальдегидных, мочевиноформальдегидных смол; смол, модифицированных путем обработки формальдегидом; малорастворимых лаков, покрытий, клеев, слоистых пластиков.

Наибольшее распространение получил продукт, содержащий 35 – 37 % формальдегида и 6 – 11 % метанола, называемый формалином. Рецептура формалина сформировалась исторически, под влиянием следующих факторов. Во-первых, метанол и вода сопутствуют формальдегиду на стадии его получения наиболее употребительным методом (метанол – сырье, вода – побочный продукт и абсорбент). Во-вторых, раствор указанного состава при положительных температурах вполне стабилен к выпадению полимера и может храниться или транспортироваться в течении неопределенно долгого времени. В – третьих, в виде водно-метанольного раствора формальдегид может применяться в большинстве производственных синтезов, а также при непосредственном использовании. и, наконец, в-четвертых, именно формалин получается при окислительной конверсии метанола в присутствии металлических катализаторов на сади абсорбции контактного газа; никаких дополнительных операций по приданию продукту товарных свойств (концентрирование, очистка и т. д.), как правило, не требуется.

В городе Томске на базе Томского нефтехимического комбината существует действующее производство формалина («Завод формалина и карбосмол») мощностью 120 тысяч тонн в год.

Основная цель проекта заключается в определении возможности расширения этого производства на примере установки синтеза формальдегида. Важным моментом является установление возможности обеспечения новой, повышенной производительности уже действующим оборудованием. Также необходимо рассмотреть вопросы, касающиеся технологического контроля, охраны труда и экологии в изменившихся условиях эксплуатации.

 



ТЕХНИКО-ЭКОНОМИЧЕСКИЙ УРОВЕНЬ И ОБОСНОВАНИЕ ОСНОВНЫХ ТЕХНОЛОГИЧЕСКИХ РЕШЕНИЙ

Дата: 2019-05-28, просмотров: 252.