Дві площини у просторі можуть бути: паралельними; збігатися; перетинатися.
Площини паралельні, якщо дві прямі, що перетинаються, однієї площини паралельні двом прямим, що перетинаються, другої площини. В проекціях з числовими відмітками найбільш зручно застосовувати горизонталі та ЛНС як прямі площини, що перетинаються. На рис. 4.1. земляні укоси задані на плані прямолінійними горизонтальними бровками 7.0 та 9.0 і лініями найбільшого скату k, l , які мають нахили i = 1:2. Задані укоси паралельні, тому що горизонталі і лінії найбільшого скату k та l паралельні / k//l, оскільки напрями їх горизонтальних проекцій паралельні, а нахили і напрями скату однакові/.
Із викладеного випливає, що для визначення паралельності двох площин необхідно в них провести горизонталі, і якщо вони будуть паралельні, то при однакових величинах спаду ї напрямах скату задані площини будуть паралельні.
Наприклад, необхідно визначити паралельність площин двох земляних укосів, заданих на плані /рис. 4.2/ прямолінійними нахиленими бровками А20 В22 , С25, D28 і величинами спаду, які, як і напрями скату, однакові для обох площин. Для цього проводимо у площині укосів горизонталі, причому вони монуть мати різні числові відмітки. В одному укосі з точки В22 як із центра проводимо горизонталь конуса радіусом, що дорівнює двом інтервалам / l = 2 м/ і дотично до неї проводимо з точки А20 пряму, яка буде горизонталлю 20 площини укооа з відміткою 20. У другому укосі проводимо горизонталь 25.
Укоси, показані на рис. 4.2, паралельні, тому що виконуються три умови паралельності площин:
1/ горизонталі площин паралельні;
2/ величини спаду площин /їх інтервалів або кутів нахилу/ однакові;
3/ напрями скату площин однакові.
Якщо площини задані масштабами спаду, то у взаємно паралельних площин:
1/ масштаби спаду паралельні;
2/ інтервали масштабів спаду дорівнюють один одному; 3/ числові відмітки масштабів спаду зростають або зменшуються в одному і тому ж напрямку.
На рис. 4.3 площини γ та ω , задані масштабами спаду, паралельні, оскільки виконуються всі три вимоги паралельності площини. Відзначимо, якщо умови паралельності двох площин виконуються, але крім цього, встановлено, що хоча б одна пара горизонталей площин з однаковими числовими відмітками збігається, то такі площини збігаються одна з одною. Якщо хоча б одна із умов паралельності площин не виконується, то такі площини перетинаються.
Знаходження лінії перетину двох площин мав велике значення при проектуванні земляних споруджень.
Побудова ліній перетину двох площин у проекціях з числовими відмітками грунтується, як і в розділі ортогональних проекцій, на способі допоміжних січних, площин. Зручно застосовувати горизонтальні допоміжні січні площини, що перетинають задані по горизонталях. Отже, задача на побудову лінії перетину двох площин зводиться до знаходження точок перетину горизонталей площин з однаковими числовими відмітками.
Для побудова лінії перетину двох площин /рис. 4.4/ проводимо горизонтальну допоміжну січну площину π20, яка має числову відмітку 20. Площина π20 перетинає площину α та β по горизонталям 20. Горизонталі 20 площин α та ß лежать в одній площині і тому перетинаються у точці К, яка належить лінії перетину площин α та β.
Оскільки лінією перетину двох площин є пряма, що визначається двома точками, тo для побудови другої точки, яка належить лінії перетину, проводимо другу горизонтальну допоміжну січну площину π18 з відміткою 18. Друга точка L лінії перетину визначиться як точка перетину горизонталей 18 площин α та ß , по яких площина π18 перетинає площини α та β. Пряма, що проходить через точки К та L , є шуканою лінією перетину площин α та ß .
На практиці при побудові лінії перетину двох площин на плані допоміжні січні площини без потреби не проводять, а для визначення точок, що належать лінії перетину, застосовують горизонталі площин, які мають однакові числові відмітки, оскільки будь-які дві горизонталі з однаковими відмітками, не паралельні одна одній, перетинаються. Тому лінія перетину в проекціях з числовими відмітками визначається як пряма, що проходить через точки перетину двох будь-яких горизонталей однієї площини з двома горизонталями другої площини, які мають такі ж числові відмітки.
Послідовність побудова лінії перетину двох площин;
1. Проводимо горизонталі з однаковими числовими відмітками у кожній з площин, що перетинаються, і зазначаємо точку їх взаємного перетину.
2. Другу точку, що належить лінії перетину, знаходимо, виконуючи такі ж побудови, але з іншою парою горизонталей з однаковими числовими відмітками.
3. Через одержані точки проводимо пряму лінію, яка є шуканою лінією перетину заданих двох площин.
Визначимо лінію перетину KL площин двох земляних укосів α та ß , заданих своїми масштабами спаду α та β /рис. 4.5/.
Для цього: 1/ побудуємо проекцію точки К . Через числові відмітки 20 на масштабах спаду перпендикулярно до α проводимо горизонталь 20 площини α і перпендикулярно до β - горизонталь 20 площини β . Відмічаємо точку К20 взаємного перетину проведених горизонталей. Ця точка є проекцією точки К лінії взаємного перетину площин α та β;
Дата: 2019-05-28, просмотров: 214.