Основные этапы процесса проведения исследования методом дерева отказов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Проведение исследования методом дерева отказов можно также представить в виде следующих шагов:

­ Определение границ системы

­ Изучение и понимание системы

­ Определение конечного события

­ Конструирование дерева отказов

­ Качественный анализ

­ Количественный анализ

­ Поиск недостающих данных

Шаг 1 – Выбор и описание системы

­ Определение способа функционирования системы

­ Информация о процессе, технических средствах и ошибках операторов

Необходима информация о свойствах:

­ опасностей, связанных с материалами, которые используются в процессе и вне его

­ опасностей, связанных с аппаратурой и определенных структурой процесса и его компонентами (например, выброс токсичного вещества через ошибочно открытый клапан)

­ Определение физических границ системы

Выбранные границы системы должны отражать наличие недостаточных данных.
Должна быть указана начальная конфигурация оборудования (необходимо указать, например, какие клапаны открыты, какие закрыты).

Шаг 2 – Исследование системы

Необходимо учесть все события, включая:

­ невозможные события

­ возможные события

Каждый технологический процесс характеризуется некоторым набором переменных процесса, отклонения которых от своих рекомендованных значений могут приводить к непредвиденным химическим реакциям, превышению рабочего давления и/или температуры и, как следствие, к повреждению (разрушениям) технологического оборудования.

Находятся контролирующие переменные, изменение которых может привести к отказу блока.

Шаг 3 - Определение главного события

Требует точности и определенности

Плохо и неточно определенное конечное событие часто является причиной некорректного анализа

Часто включает предварительный анализ (например, методы HAZOP или FMEA)

Необходимо четко и ясно определить, что, где и когда случилось

Шаг 4 - Конструирование дерева отказов

Рассматриваемое главное событие изображается на вершине

При построении дерева логическая схема отталкивается от главного события. Исходная точка – это не причины, приведшие к событию, а оно само. И только задав событие, можно начинать исследование возможных причин его появления.

Ветви дерева представляют собой все пути, по которым событие может реализовываться, а связь между исходными событиями и главным событием осуществляется через логическое условие

Обычно не существует исходных причин, а существуют первоначальные ошибки или отказы, приводящие к развитию во времени нежелательного события. Отказы, входящие в структуру дерева отказов, могут быть поделены на три группы [2]: первичные отказы; вторичные отказы; отказы управления. К первичным отказам относятся отказы оборудования, которые произошли в обычных условиях функционирования оборудования. Вторичные отказы происходят вследствие изменений условий работы оборудования. Отказы управления имеют место в случаях, когда нормально функционирующее оборудование не получает по каким-либо причинам управляющих сигналов. Вторичные отказы и отказы управления являются промежуточными событиями и требуют дополнительного анализа.

В случае, если исходные причины возникновения нежелательного события находятся в прямой связи от конечного события, такая проблемная ситуация слишком проста для ее анализа с помощью метода дерева отказов.

Шаг 5 - Качественный анализ

Анализ набора минимальных сечений

Необходимо найти способ определения возможных комбинаций отказов в работе оборудования, которые приводят к возникновению нежелательного события

Минимальная комбинация ошибок персонала и повреждений оборудования, достаточная для возникновения нежелательного события, - это краткий вариант дерева отказов. Алгоритм вычисления минимального краткого пути состоит из двух этапов: составление таблицы возможных путей и составление серии матриц. Для составления таблицы сначала выбирается условие, далее исследуется число входов, а затем число ветвей дерева. Если при этом соответствующий вход также является «калиткой», то в таблицу вписывается его номер, а для конечных ветвей дерева вписывается буква, обозначающая исходный процесс. Затем составляются матрицы, где условия заменяются ее входами и этот процесс продолжается пока мы не получим главного события через буквенное выражение.

Такие комбинации могут использоваться для классификации путей развития нежелательного события и для количественной оценки дерева отказов, если доступна необходимая информация

Для анализа небольших деревьев могут применяться простые методы (без использования ЭВМ)

Ранжирование базовых событий может быть определено по минимальному набору событий

Шаг 6 - Количественный анализ

Имея конечную схему дерева отказов и оценочную частоту (вероятность) для каждого базового или неразвивающегося события, можно вычислить частоту главного события или его вероятность. Расчет чувствителен к цифровым ошибкам в прогнозируемой частоте главного события, если дерево имеет повторяющиеся события в различных ветвях, которые разделены условием «и». Метод расчета начинается с базовых событий на дереве отказов и продвигается вверх к главному событию. Математическая связь для расчетов приведена в таблице

 

Таблица

Математическая связь для расчетов по методу FTA

Условие Входная пара (B), (C) Вычисление выхода (А) Время t (год)
«или» PB* «или» PC FB* «или» FC FB «или» PC PA = PB+PC-PBPC @ PB+PC FA = FB + FA не разрешено t-1
«и» PB «и» PC FB «и» FC FB «и» PC PA =PB×PA не разрешено; преобразуйте к FB «и» PC FA =FB×PС t-1

*P – вероятность; F – частота (время-1)

Важно помнить, что для условия «и» на входе может быть несколько термов вероятности, на только одна частота.

Одними из двух важнейших логических значков в деревьях отказов являются значки «И». При использовании таких значков необходимо учитывать:

(а)     выходные данные даются из входных данных в виде отказов в превентивных (защитных) действиях;

(б)     выходные данные даются из входных данных в виде отказов защитных приборов (устройств);

(в)     выходные данные даются из отказов двух приборов (устройств), действующих параллельно;

(г)     выходные данные даются из отказов двух приборов, из которых один работает, а другой выключен.

При конструировании деревьев отказов различия между этими системами не вызывает проблем, но могут возникнуть трудности на стадии оценки.

Как уже было описано, вероятность р0 , которая является выходным данным значка «И» с двумя входными данными существует, если вероятности входных событий р1 и р2, в виде:

р0= р1 р2

Происходит событие или нет, можно описать в терминах частоты или вероятности. Отказ оборудования обычно выражается через частоту и отказ в превентивных действиях или предохранительных приборах – через вероятность.

В защитных приборах, как правило, периодически происходят отказы и поэтому их нужно проверять. Данные по отказам таких приборов могут быть даны как в виде вероятности отказа, так и частоты. Их взаимосвязь можно показать, как:

р0= f tр/2                                           (1)

где р – вероятность отказа, f - уровень отказа, а tр - интервал тестирования.

Тогда для ситуации (a) частота отказа f 0:

f 0= f р                                   (2)

где р – вероятность отказа или превентивных действий, f - частота входного события, а f 0 – частота выходного события.

Для ситуации типа (б) уравнение 2 можно также применять, причем вероятность отказа в защитных мерах в данном случае находится по уравнению 1.

Оценка ситуации (в) менее определенна. Для этого, можно применять приближенные модели параллельных систем, получаемых или по Маркову или из методов функций добавочной (присоединенной) плотности. Они дают вероятность выходных данных, где события даются в виде частоты входных данных. Когда возможно, применяется приближение для редких событий для перевода вероятности в частоту:

f =р/t

Подобным образом, для ситуаций (г) можно применять подходящие модели.

Дерево отказов может быть использовано для анализа чувствительности отдельных событий к отклонениям параметров системы. Анализ значимости ранжирует различные наборы минимальных сечений в порядке вклада в частоту общих системных отказов.

Шаг 7 - Поиск недостающих данных

Необходимы данные о частоте отказов компонентов, отсутствии защитных систем, частоты ошибок операторов

Используемая информация должна быть достоверной

При наличии лишь недостаточных данных или их отсутствии требуется инженерное изучение оборудования

Требуется информация о внешних событиях

Хотя некоторые данные могут быть использованы непосредственно, другие могут быть модифицированы на основе экспертной оценки. Первичный результат количественной оценки – это частота (или вероятность) верхнего события и более низких промежуточных событий.

Обычно для исследования используются данные по коэффициентам отказов, взятые из открытой литературы, с учетом корректирующих факторов [3].

Для повышения достоверности оценки вероятностей исходных событий необходимо учитывать прошлый опыт работы соответствующей установки или какой-либо подобной ей на данном предприятии (статистика отказов отдельных элементов). Методы получения обработки подобной информации хорошо развиты.

Учебные примеры и упражнения по FTA

Учебный пример 1

Целью данного упражнения является закрепление навыков по проведению процедуры исследования опасности методом дерева отказов (FTA). Применение метода FTA будет продемонстрировано на примере исследования опасности при хранении воспламеняющейся жидкости. Рассмотрение одного из нежелательных событий может привести к главному событию – выбросу воспламеняющейся жидкости из бака хранения. На примере течи бака (Ozog, 1985) проведем исследования ручным методом в виде поэтапной процедуры исследования методом отказов.

ШАГ 1. Описание системы

Система хранения воспламеняющейся жидкости в виде диаграммы распределения ресурсов и оборудования (P&ID Process and Instrumentation Diagrams) дана на рисунке G.1 – бак для хранения воспламеняющейся жидкости (Ozog, 1985) [4].

Бак спроектирован так, чтобы удерживать воспламеняющуюся жидкость под слабым давлением азота. Система управления (PICA-1) контролирует давление. Кроме этого, бак защищен с помощью клапана, который перекрывается в аварийных ситуациях. Жидкость питает бак через автоцистерну. Насос (Р-1) перекачивает воспламеняющуюся жидкость для дальнейшей переработки.

Рисунок 13.1 Бак для хранения воспламеняющейся жидкости P&ID (Ozog, 1985)


Обозначения:

FV    –     управляющий клапан потока;

P-1    –     насос;

PV    –     управляющий клапан давления;

V      –     клапан;

RV   –     предохранительный клапан;

P       –     давление;

T       –     температура;

L       –     уровень;

F       –     поток;

I –     индикатор;

C      –     контроллер;

A      –     сигнализатор;

H      –     высокий;

L       –     низкий.

ШАГ 2. Идентификация риска

Метод может быть использован для идентификации главной опасности, такой, как выброс воспламеняющихся веществ из бака. Для нашего случая воспользуемся данными, полученными методом HAZOP (Ozog, 1985) [4].

ШАГ 3. Построение дерева отказов

Каждое событие помечено соответственно В для базовых или неразвитых событий, М – для промежуточных событий и Т – главное событие. Процедура начинается с верхнего события (основной выброс воспламеняющегося вещества) и определяет возможные события, которые могли привести к этому инциденту.

Главное событие может индуцироваться несколькими исходными, например:

М1:   Утечка во время разгрузки автоцистерны.

М2:              Разрушение бака из-за внешних событий.

В1:               Повреждение сливного отверстия бака.

М3:              Повреждение бака из-за взрыва.

М4:              Повреждение бака из-за избыточного давления.

Причем мы видим, что каждое из этих событий может привести к главному событию.

События М1, М2, М3 и М4 требуют дальнейшего развития. Для события В1 существует адекватная историческая информация, что позволяет считать его базовым событием. Анализ продвигается вниз на один уровень, пока все механизмы отказов не будут исследованы до соответствующей глубины. Базовые события и неразвитые события обозначены кругами и ромбами соответственно. Дальнейшее развитие неразвитых событий не считается необходимым или возможным. В таблице приведены характерные инициирующие события.

Таблица

Инициирующие события

Обозначение Характеристика события Вероятность (частота) события
В2 Частота разгрузки цистерны 300/год
В3 Воздействие от средства передвижения 1×10-5 /год
В4 Авиа катастрофа 1×10-6 /год
В5 Землетрясение 1×10-5 /год
В6 Торнадо 1×10-5 /год
М5 Пролив из бака 1×10-4
М9 Переполнение бака и истечение через RV-1 1×10-4
М10 Разрыв бака вследствие реакции 1×10-7
В15 Достаточный объем в баке для разгружаемой цистерны 1×10-2
В16 Отказ или игнорирование LIA-1 1×10-2
В17 Недопустимое вещество в цистерне 1×10-3
В18 Из цистерны перед разгрузкой не взята проба 1×10-2
В19 Реагент реагирует с разгружаемыми веществами 1×10-1
В20 Рост давления превосходит пропускную скорость RV-1 и РV-1 1×10-1
В7 Разгружаемый бак требует очистки азотом 10/год
М6 Индуцируется вакуум 2×10-2
В8 Кипение недостаточно, чтобы предотвратить вакуум 1×10-2
В9 РV-2 ошибочно закрыт 1×10-2
В10 Отказ PICA-1 при закрытии РV-2 1×10-2
В11 Сбой в подаче азота 1×10-4
М7 Давление в баке превышено 1×10-2
М8 Отказ предохранительной системы при повышенном давлении 2×10-3
В12 Отказ PICA-1 при закрытии РV-1 1×10-2/год
М11 Превышено давление в баке 4×10-5/год
В13 Повышенная пропускная способность RV-1 1×10-3
В14 V-8 закрыт 1×10-3
М12 Высокое давление в баке 4×10-3/год
В21 Отказ или игнорирование PICA-1 1×10-2
В22 РV-1 ошибочно закрыт 1×10-3 /год
В23 V-7 закрыт 1×10-3/год
В24 Температура во входном отверстии выше нормальной 1×10-3/год
В25 Высокое давление в оголовке факела 1×10-3/год

Теперь построим схематичное дерево отказов, оно строится согласно правилам, о которых мы говорили раньше. Логические условия выбираются исходя из «здравого смысла» работы системы. Таким образом мы строим полное дерево отказов.

Конечное схематичное дерево отказов выполненное для наглядности через буквенные обозначения в соответствии с таблицей G.1 в основном идентично представленному (Ozog, 1985) [4]. Однако, некоторые наборы промежуточных событий были добавлены для большей ясности анализа (рисунок G.1).

ШАГ 4. Качественное исследование структуры

Качественная оценка производится наилучшим образом с помощью анализа минимальных сечений. Однако, уже при первом просмотре выявляются 5 основных путей, ведущих к вершине. Например, В1, В3–В6.

На этом шаге исследователь должен просмотреть минимальные сечения, чтобы гарантировать, что все они представляют реальные, возможные происшествия. Минимальное сечение, которое не ведет к вершине – показатель ошибки построения дерева или ошибки в определении минимального сечения.

ШАГ 5. Количественная оценка

Для этого предлагается метод анализа «вход – выход». Дерево отказов должно быть в внимательно просмотрено на предмет обнаружения повторяющихся событий, которые могут привести к численной ошибке. Повторяющиеся события отсутствуют. Исследователь должен ввести численные значения частоты (в год) или вероятность (безразмерную) для каждого базового события.

Расчет начинается с подножия дерева отказов и продолжается в направлении вершины. Ниже представлен расчет для самой левой ветви дерева отказов, поднимающейся к событию М1. Событие М9 «Переполнение танка и истечение через RV–1» наступает при одновременном наступлении В15 и В16, значит перемножим вероятности.

Р(М9) = Р(В15) × Р(В16) = 1·10-2 × 1·10-2 = 1·10-4 год-1

К М10 ведут через «И» 4 события, заданные их вероятностями:

Р(М10) = Р(В17) × Р(В18) × Р(В19) × Р(В20) = 1·10-3 × 1·10-2 × 1·10-1 × 1·10-1 = 1·10-7 год-1

М10 и М9 ведут к М5 через логический блок «ИЛИ»:

Р(М5) = Р(М9) + Р(М10) = 1·10-4 + 1·10-7 ≈ 1·10-4 год-1

События М1 – промежуточное, наступающее при одновременном появлении В2, заданного частотой и М5, заданного вероятностью:

F(М1) = F(В2) × Р(М5) = 300·год-1 × 1·10-4 = 3·10-2 год-1

Аналогично рассчитываются все другие частоты и вероятности, и рассчитывается частота главного события Т. Для самопроверки приведем рассчитанные частоты пяти основных промежуточных событий, ведущих к вершинному:

М1    3·10-2 год-1

М2    3·10-5 год-1

В1    1·10-4 год-1

М3    2·10-3 год-1

М4    2·10-5 год-1

Дерево отказов может быть использовано для анализа чувствительности отдельных событий к отклонениям параметров системы.

Проведите анализ дерева отказов с целью выдачи рекомендаций, в каких направлениях должны быть приняты меры для снижения риска главного события. Важно понимать, что решения по изменениям процесса и замене оборудования требуют нового исследования, и только после этого могут стать предположениями.


Рисунок 13.2 Схематичное дерево отказов




Дата: 2019-05-28, просмотров: 229.