Пластиды (хлоропласты, хромопласты), хлорофиллы, каротиноиды
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

В растениях встречается три типа пластид, которые делятся в зависимости от типа пигментов, входящих в их состав:

хлоропласты,

хромопласты,

лейкопласты.

Для процесса фотосинтеза важнейшую роль играют хлоропласты, содержащие хлорофиллы. Хромопласты или отдельные группы каротиноидов могут участвовать в процессе фотосинтеза, однако их роль более вспомогательная. Однако, встречаются растения с преобладанием хромопластов (японская слива, декоративные краснолистные формы), которые самостоятельно осуществляют процесс фотосинтеза.

Строение хлоропласта - двойная мембрана, отделяющая хлоропласт от цитоплазмы, фотосинтетические мембраны - тилакоиды стромы и тилакоиды гран, наличие участков ДНК, способность к цитоплазматическому наследованию. Внутренние части полости тилакоидов гран и межгранальные тилакоиды - это единая замкнутая фотосинтетическая внутримембранная полость, объединенная в единую фотоэнергетическую систему хлоропласта.

Грана хлоропласта состоит из 10-30 тилакоидов, а всего в хлоропласте 100-150 гран, таким образом поверхность фотосинтетических мембран тилакоидов в 10 раз превышает поверхность самого хлоропласта.

Особая роль отводится концевым тилакоидам граны, которые, будучи селективным фильтром, предохраняют грану от излишнего облучения или подают сигнал на изменение ориентации оси граны. При оптимальных условиях освещения оси гран обычно направлены радиально к более выпуклой стороне хлоропласта.

Функция хлоропласта - осуществление процесса световой фазы фотосинтеза и накопление энергии в виде макроэргических молекул (АТФ и НАДФ восстановленного).

Свойства хлоропластов - способность к перемещению внутри клетки под воздействием условий освещенности и концентрации углекислого газа. Передвижение хлоропластов по клетке называется фототаксисом или хемотаксисом хлоропластов в зависимости от причины, вызывающей это передвижение. При умеренном освещении хлоропласты выстраиваются таким образом, чтобы на них попадало максимальное количество света, а при избыточном освещении выстраиваются вдоль падающих солнечных лучей. Такое расположение хлоропластов называется парастрофией. Ночью хлоропласты выстраиваются в положении апострофии.

Хромопласты придают желтую, оранжевую, красную окраску лепесткам, плодам, листьям, так как содержат большое количество специфических каротиноидов, обладающих тем или иным оттенком окраски. Хромопласты функционально дополняют деятельность хлоропластов, кроме того выполняют функцию привлечения насекомых-опылителей, животных-распространителей семян.

В состав фотосинтетических мембран (тилакоидов) входят специфические фотосинтетические пигменты - хлорофиллы и каротиноиды - погруженные в эти мембраны.

Хлорофиллы делятся на четыре разновидности: а, b, c, d. Это органические соединения, содержащие 4 пиррольных кольца, связанных атомами магния и имеющими зеленую окраску. Отличаются между собой хлорофиллы по молекулярной массе:

а - имеет молекулярную массу 893 и включает фитоловый и метиловый остаток,

b - имеет молекулярную массу 907 и включает фитоловый и метиловый остаток,

с - включает только метиловый остаток,

d - имеет молекулярную массу 891 и близок к протохлорофиллу.

У высших растений встречаются в основном хлорофиллы а и b, а у водорослей - а и с или а и d.

Хлорофилл впервые был выделен в 1818 году, к 1940 году была расшифрована его структура, а в 1960 году осуществили синтез хлорофилла. Хлорофиллы - это сложные эфиры дикарбоновой хлорофиллиновой кислоты с двумя спиртами (фитолом и метанолом). В карбоксильных группах хлорофиллиновой кислоты водород замещен остатками метилового и фитолового спиртов. Наличие в порфириновом ядре хлорофилла коньюгированной по кругу системы десяти двойных связей и магния обуславливает характерный для хлорофилла зеленый цвет. Хлорофиллу а присущ темно-зеленый цвет, а хлорофиллу b - светло-зеленый цвет. Остаток фитола придает хлорофиллу липоидные свойства, то есть он может растворяться в жировых растворителях.

Хлорофиллам свойственна флуоресценция - т.е. свойство под влиянием падающего света, в свою очередь, излучать свет, при этом длина волны излучаемого света обычно больше длины волны возбуждающего света. В проходящих лучах цвет хлорофилла - изумрудно-зеленый, а в лучах отраженного света хлорофилл приобретает красный цвет, то есть длина волны, отражаемой хлорофиллом, больше, чем длина волны света, возбуждающего излучение хлорофилла.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

В хлоропластах листьев хлорофиллов в три раза больше, чем каротиноидов, а в плодах, лепестках, зернах, корнеплодах - наоборот.

Каротиноиды являются непременными спутниками хлорофиллов. Они подразделяются на бескислородные (каротины и ликопины, имеющие оранжевую и красную окраску - общая формула - С40Н56) и окисленные (ксантофиллы - общая формула - С40Н56О2).

Световая фаза фотосинтеза.

Световая фаза фотосинтеза проходит непосредственно в хлоропластах и состоит из поглощения пигментами хлоропластов фотонов, несущих световую энергию и превращения этой физической энергии солнца в химическую энергию макроэргических молекул. Процесс идет паралелльно по двум механизмам:

циклическому фосфорилированию в фотосистеме 1,нециклическому фосфорилированию в фотосистеме П.

При этом фотосинтетическом фосфорилировании физическая суть процесса состоит в поглощении молекулой пигмента кванта света, переход электрона, возбужденного этим квантом света, на более высокий уровень на период 10-9 -10-8 секунды, после чего электрон возвращается на прежний энергетический уровень, а поглощенная энергия затрачивается на присоединение фосфатной группы к АДФ и образование АТФ, а также на фотолиз воды и образование НАДФ. Н2.

В фотосистемах пигменты образуют реакционные центры, куда входят молекулы хлорофиллов, каротиноидов и ферментов. В каждый реакционный центр входят 2 молекулы хлорофилла, две молекулы феофитина, молекула цитохрома, ферредоксина и НАДФ. Несколько реакционных центров объединяются в фотосинтетическую единицу - комплекс пигментов и других молекул. Одна фотосинтетическая единица включает до 300 молекул хлорофилла и 50 молекул каротиноидов.

Один реакционный центр способен поглотить 50 квантов солнечного света за 1 секунду. Поглощение квантов света происходит последовательно каждой из молекул пигмента (один раз в 0,1 секунды). Синглетное состояние электронов (возбужденное состояние, при котором происходит переход электрона на более высокий энергетический уровень) длится всего около 10-9секунды, если же поступление энергии происходит стабильно, то возникает метастабильное или триплетное состояние электрона, которое длится уже 10-2секунды, которое и играет в световой фазе фотосинтеза определяющую роль.

Фотосистема 1.

Фотосистема 1, где происходит циклическое фосфорилирование, эволюционно более ранняя, процесс идет без выделения кислорода. Основой является комплекс пигментов, воспринимающие длину волны солнечного света 700 нм, при этом происходит возбуждение молекулы и образование молекул АТФ. При возбуждении электрона в фотосистеме 1 происходит его захват на более высоком энергетическом уровне белком ферредоксином, обратный путь электрона проходит с помощью цитохромов и флавопротеидов. Процесс перехода по цепи указанных ферментов определяет высвобождение энергии и передачу ее в процесс фосфорилирования АДФ.

Фотосистема П.

В процессе эволюции у высших растений сформировалась дополнительная фотосистема - фотосистема П - которая стала наиболее существенной в процессе фотосинтеза высших растений. Основой действия фотосистемы П является комплекс пигментов, воспринимающих длину волны солнечного света 680 нм. Эти пигменты образуют реакционный центр, в котором помимо реакции циклического фосфорилирования и образования молекул АТФ происходит и разложение молекулы воды и образование молекул НАДФ восстановленное, то есть нециклическое фосфорилирование. При этом активированные электроны передаются по цепи ферментов, в том числе и ферредоксинов на молекулу НАДФ, превращаясь в НАДФхН2.

В фотосистеме П на уровень переданного электрона поступает электрон от гидроксила (продукта ионизации воды), при этом два иона гидроксила соединяются и образуют перекись, которая затем разлагается, что приводит к выделению молекулярного кислорода. Важными кофакторами процессов фотосинтеза являются ионы Мn и Сl.

Дата: 2019-05-28, просмотров: 175.