Передвижение воды по растению
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При передвижении по клеткам паренхимы корня вода обогащается минеральными веществами и в таком составе попадает в клетки ксилемы, скелетной основой которой являются сосуды и трахеиды. Сосуды, у которых нет протоплазмы, обладают высокой сосущей силой, пропорциональной осмотическому давлению содержащегося в них раствора.

Находящаяся в сосудах и трахеидах вода имеет форму тончайших нитей, которые своими верхними концами как бы подвешены к испаряющим клеткам листьев, а нижними концами упираются в паренхимные клетки корня. Для того, чтобы вода передвигалась вверх, необходимо, чтобы испаряющие клетки обладали достаточной величиной сосущей силы. В отсутствие этого условия возникает ток воды в сосудах в обратном направлении.

За счет того, что в атмосфере почти всегда содержится воды меньше, чем в растении, определяется явление отрицательного водного потенциала и, следовательно, сосущей силы атмосферы. Сосущая сила в испаряющих клетках достигает 2-4 тысяч килопаскаль.

Удерживание воды в сосудах ксилемы в виде нитей обуславливается силами когезии и адгезии.

Когезия - это прочное сцепление молекул воды между собой.

Адгезия - это прилипание молекул воды к гидрофильным стенкам клеток ксилемы.

При передвижении воды в клетках ксилемы возникает электрический заряд вдоль поверхностей раздела клеток (по мембранам). Электроосмос определяется наличием проницаемых мембран с системой пор разной величины и постоянной диффузии электролитов, которыми и является передвигаемая по ксилеме пасока (вода и растворенные в ней минеральные вещества).

Состав пасоки сильно варьирует в зависимости от вида растения и фазы его вегетации и фазы органогенеза. Пасока однолетнего травянистого растения и многолетнего древесного растения безусловно сильно отличаются друг от друга, так же как и пасока у одного и того же растения весной, летом и осенью. У ряда древесных растений человек использует весеннюю пасоку в своем питании (березовый сок, кленовый сок). Пасока, выделяющаяся при гуттации, имеет в своем составе очень мало минеральных веществ и сахаров, поскольку происходит их естественная фильтрация при прохождении пасоки через эпитему (ткань, выстилающую воздушную полость гидатоды).

Транспирация.

Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.

Транспирация выполняет в растении следующие основные функции:

это верхний двигатель тока воды,

это защита от перегрева,

это нормализация функционирования коллоидных систем клеток листа.

Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.

Интенсивность транспирации - это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:

 

Тр= DС г Н2О _

år м2.1час,

 

где Тр - интенсивность транспирации, DС - градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, år - сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).

Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.

Устьичное диффузионное сопротивление зависит от степени открытия устьиц.

Кутикулярное диффузионное сопротивление зависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.

Продуктивность транспирации - это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.

Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.

Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.

Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.

Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.

Регулировка транспирация происходит в растении по двум механизмам:

устьичная регуляция,

внеустьичная регуляция.

Наиболее существенной является устьичная регуляция, которая определяется как некоторыми физическими закономерностями, так и влиянием ряда факторов внешней среды и внутренней биохимией клеток листа.

С физической точки зрения основой испарения из устьица является физический механизм испарения с ограниченных поверхностей очень маленькой площади. При этом имеет значение величина снижения упругостиводяного пара ( F- f) и расстояние (l), на протяжении которого поддерживается эта разница, которая определяет градиент дефицита насыщения.

F-f

D D = - --------

l

 

При этом скорость испарения V будет пропорциональна градиенту насыщения, а А - постоянная, определяемая прочими условиями, влияющими на скорость испарения:

 

F-f

V = А - --------

l

 

Поскольку речь идет об ограниченных поверхностях (устьице), то краевое испарение за счет меньшей величины l2 будет выше, чем в центре, т.е.:

 


F-f F-f

--- - > - -----

l2                       l1

 

Применительно к испарению с площади круга формула скорости испарения принимает вид

V = k R2,

где k - значение всех прочих факторов, определяющих скорость испарения, а R - радиус круга.

При испарении с малых поверхностей, когда доля участия краевого испарения значительна, формула видоизменяется в

 

V = k Rn,

 

где n - положительное число между 1 и 2, т.е.2 >n>1. В случае малых площадей, таких как отверстие устьичной щели, n становится равным 1. Таким образом определяющим становится фактор k, т.е. суммарное значение факторов окружающей среды и суммарное количество устьиц на листе.

В устьичной транспирации ведущими факторами являются:

количество устьиц на единицу листовой поверхности,

форма листа (чем более причудлива форма листа, тем больше его площадь, а, значит, и количество устьиц),

наличие ионов К+ (чем выше концентрация, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),

наличие абсцизовой кислоты (чем выше концентрация этого гормона старения, тем меньше раскрытие устьица) (пример - мутант томата wilty),

концентрация углекислого газа в подустьичной полости (чем ниже концентрация, т.е. меньше 0,03%, находящихся в воздухе, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),

наличие солнечного света (на свету крахмал превращается в простые сахара, т.е. концентрация клеточного сока выше, поэтому наблюдается больший приток воды в замыкающие клетки устьица и раскрытие устьичной щели),

наличие и скорость ветра (непосредственно к испаряющей поверхности прилегает слой воздуха, в котором водяной пар постепенно испаряется далее в атмосферу, при этом в безветренную погоду скорость испарения выражается линейной зависимостью между дефицитом насыщения воздуха и расстоянием от испаряющей поверхности. Однако, при наличии ветра, который "сдувает" испаряющиеся молекулы воды, происходит увеличение дефицита насыщения воздуха. Возле поверхности листа сохраняется лишь небольшой ламинарный слой (dS), сохраняющийся и при сильном ветре, где можно наблюдать линейную зависимость дефицита насыщения от расстояния).

Внеустьичная транспирация определяется количеством и размерами межклеточных пор в кутикуле листа. Радиус клеточных пор очень мал, составляет около 100-200 Ао, т.е. около 0,00001мм, однако в листе имеющем много кутикулярных пор скорость испарения снижается достаточно значительно, иногда почти в два раза.

Различают три вида движения устьиц (закрытие и открытие устьиц):

фотоактивные (под действием солнечного света),

гидроактивные (при потере воды),

гидропассивные (при дожде из-за набухания клеток эпидермиса и сдавливания устьичных клеток).

Суточный ход транспирации у всех растений определяется максимальной транспирацией в утренние часы и минимальной - в полуденные. При этом весьма существенное значение имеют и такие факторы, как температура почвы и воздуха, влажность почвы и воздуха, интенсивность солнечного излучения, наличие ветра.

Сезонный ход транспирации у многолетних растений определяется фазами развития растения.


Водный баланс в растении.

Водный баланс в растении поддерживается тогда, когда скорость поглощения воды равна скорости ее испарения. Обычно водный баланс в растении меняется в течение суток, при этом он зависит от уровня агротехники при выращивании растений, т.е. от уровня орошения и удобрения. Несбалансированность поступления и испарения воды проявляется в наличии водного дефицита, который наблюдается, как правило, у растений днем и отсутствует ночью.

В практике сельского хозяйства используются приемы, снижающие водный дефицит у растений: Использование освежительных поливов, Использование антитранспирантов.

Антитранспиранты делятся на две разновидности:

вещества, вызывающие закрытие устьиц (абсцизовая кислота, фенилмеркурацетат),

вещества, образующие пленки на листьях (полиэтилен, латекс).

Лекция 10-12

Тема: Фотосинтез.

Дополнительная литература:

Н.Н. Овчинников, Н.М. Шиханова. Фотосинтез. М., 1972

Пигменты пластид зеленых растений и методика их исследований. Под ред. Сапожникова. Изд-во "Наука", М. - Л., 1964.

И.А. Шульгин. Солнечная радиация и растение. Изд-во "Гидромет", Л., 1967.

Ю.С. Насыров. Фотосинтез и генетика хлоропластов. Изд-во "Наука", М., 1975.

Вопросы к теме:

Общая характеристика фотосинтеза.

Лист как орган фотосинтеза.

Пластиды (хлоропласты, хромопласты), хлорофиллы, каротиноиды.

Световая фаза фотосинтеза.

Фотосистема 1.

Фотосистема П.

Фотолиз воды или реакция Хилла.

Темновая фаза фотосинтеза или цикл Кальвина (С-3 путь фотосинтеза).

С-4 путь фотосинтеза.

САМ-фотосинтез.

Фотодыхание.

Характеристика основных показателей фотосинтеза: интенсивности и продуктивности.

Усвоение растением фотосинтетически активной радиации.

Условия, влияющие на интенсивность и продуктивность фотосинтеза.

Пути повышения продуктивности фотосинтеза.

Суточный ход фотосинтеза у светолюбивых и теневыносливых растений.

Роль зеленых растений в природе.

Дата: 2019-05-28, просмотров: 187.