Новый метод маскировки программ мы далее обозначим аббревиатурой "ММ". Его более подробное описание можно найти в [2]. Метод ММ применяется к функциям маскируемой программы по отдельности, при этом структура маскируемой программы в целом не изменяется. Для изменения структуры маскируемой программы могут применяться стандартные методы открытой вставки и выноса функции, которые, однако, не являются частью предлагаемого метода маскировки.
При маскировке каждой функции ММ использует, наряду с локальными несущественными переменными, глобальные несущественные переменные, которые формируют глобальный несущественный контекст. В маскируемую программу вносятся несущественные зависимости по данным между сущест-венным и несущественным контекстом функции. Наличие глобального несущественного контекста, совместно используемого всеми замаскированными функциями, приводит к появлению в замаскированной программе зависи-мостей по данным между всеми функциями и глобальными переменными.
Метод ММ состоит главным образом из преобразований графа потока управления. В результате граф потока управления замаскированной программы значительно отличается от графа потока управления исходной программы. Метод не затрагивает структур данных исходной программы, но вносит в за-маскированную программу большое количество несущественных зависимостей по данным. В результате, замаскированная программа значительно сложнее исходной как по управлению, так и по данным.
Мы предполагаем, что перед маскировкой были выполнены все стандартные шаги анализа программы: лексический, синтаксический, семантический, анализ потока управления (построение графа потока управления и деревьев доминирования и постдоминирования) и консервативный глобальный анализ потоков данных (достигающие определения и доступные выражения с учётом возможных алиасов). Дополнительно может быть выполнено профилирование дуг, результаты которого учитываются в преобразованиях клонирования дуг и развёртки циклов.
Общая идея метода может быть охарактеризована следующим образом.
Во-первых, значительно увеличить сложность графа потока управления, но так, чтобы все дуги графа потока управления, внесённые при маскировке, проходились при выполнении программы. Это позволяет преодолеть основную слабость "непрозрачных" предикатов: насколько бы не были они сложны для статического анализа программы, полустатический анализ позволяет выявить такие предикаты (точнее, порождённые ими несущественные дуги графа потока управления) с большой долей уверенности.
Во-вторых, увеличить сложность потоков данных маскируемой функции, "наложив" на неё программу, которая заведомо не влияет на окружение маскируемой функции и, как следствие, не изменяет работы программы. "Холостая" функция строится как из фрагментов маски-руемой функции, семантические свойства которых заведомо известны, так и из фрагментов, взятых из библиотеки маскирующего трансля-тора. Чтобы затруднить задачу выявления холостой части замаскиро-ванной функции используются как языковые конструкции, трудно поддающиеся анализу (указатели), так и математические тождества.
Метод маскировки можно разбить на несколько этапов:
Увеличение размера графа потока управления функции без нарушения его структурности. На этом этапе выполняются различные преобразо-вания перестройки циклов, которые изменяют структуру циклов в теле функции, клонирование базовых блоков. Цель этого этапа - существенно увеличить размер графа потока управления функции.
Разрушение структурности графа потока управления функции. На этом этапе в граф потока управления вносится значительное количество новых дуг. При этом существовавшие базовые блоки могут оказаться разбитыми на несколько меньших базовых блоков. В графе потока управления могут появиться пока пустые базовые блоки. Цель этого этапа - подготовить место, на которое в дальнейшем будет внесён несущественный код.
Генерация несущественного кода. На этом этапе граф потока управления заполняется инструкциями, которые не оказывают никакого влияния на результат, вырабатываемый маскируемой программой. Несущественная, "холостая" часть пока никак не соприкасается с основной, функциональной частью программы.
"Зацепление" холостой и основной программы. Для этого исполь-зуются как трудноанализируемые свойства программ (например, указатели), так и разнообразные математические тождества и неравенства.
В качестве примера применения предложенного метода маскировки мы выбрали небольшую программу, которая решает задачу о 8 ферзях. Для маскировки мы выберем основную функцию queens этой программы.
Метрика | queens | MM(queens) | CM(queens) |
LC | 49 | 711 | 4171 |
YC | 0.595 | 0.8119 | 0.2402 |
UC | 0 | 0 | 0 |
DC | 82 | 8964 | 143807 |
Таблица 4. Изменение метрик для замаскированной процедуры queens
Преобразование | OC | TC | MC | MC/TC | CL | SL | DL | D |
MM(queens) | 4 | 29.02 | 110.68 | 3.81 | 5 | 2 | 7 | 3 |
CM(queens) | ? | 170.24 | 1754.14 | 10.30 | 5 | 2 | 7 | ? |
Таблица 5. Сравнение методов маскировки для функции queens
В таблице 4 в столбце queens приведены базовые метрики сложности кода для исходной процедуры queens; в столбце MM(queens) - для процедуры, замаскированной с помощью предложенного метода маскировки; в столбце CM(queens) - для процедуры, замаскированной с помощью коммерческого маскировщика рассмотренного выше.
В таблице 5 приведены метрики цены применения маскирующего преобразования, усложнения программы требуемой глубины анализа для предложенного метода маскировки MM и для коммерческого маскировщика CM. Для коммерческого маскировщика сложность алгоритма маскировки неизвестна, поэтому в соответствующих ячейках таблицы стоит знак "?". Из таблицы видно, что новый метод маскировки MM существенно дешевле, чем реализованный в коммерческом маскировщике.
Дата: 2019-05-28, просмотров: 273.