Печень играет центральную роль в многочисленных реакциях промежуточного обмена углеводов. Среди них особенно важны описанные ниже процессы.
1) Превращение галактозы в глюкозу. Галактоза поступает в организм в составе молочного сахара. В печени происходит ее превращение в глюкозо-1- фосфат (Г-1-Ф). При нарушении функции печени способность организма использовать галактозу снижается (на этом основана функциональная проба печени с нагрузкой галактозой).
2) Превращение фруктозы в глюкозу Печень превращает фруктозу во фруктозо-1-фосфат (Ф-1-Ф) с помощью содержащейся в ней специфической фруктокиназы при участии АТФ. Ф-1-Ф расщепляется в печени альдолазой В.. Часть фруктозы под действием гексокиназы превращается во фруктозо-6-фосфат, промежуточный продукт основного пути распада глюкозы. Под действием глюкозофосфатизомеразы фруктозо-6-фосфат превращается в глюкозо-6-фосфат ( Г-6-Ф).
3) Синтез и распад гликогена Гликоген синтезируется из активированной глюкозы (Г-6-Ф). Печень может синтезировать гликоген и из других продуктов углеводного обмена, например, из молочной кислоты. Распад гликогена в печени происходит и гидролитически, и фосфоролитически. Под действием фосфорилазы образуется Г-1-Ф, который превращается в Г-6-Ф, последний включается в различные метаболитичекие процессы. Печень служит единственным поставщиком глюкозы в кровь, так как только под влиянием печеночной микросомальной Г-6-фосфатазы из Г-6-Ф освобождается глюкоза. Таким образом, под влиянием обратимых реакций распада и синтеза гликогена регулируется количество глюкозы в соответствии с потребностями организма. Уровень гликогена регулируется гормональными факторами: АКТГ, глюкокортикоиды и инулин повышают содержание гликогена в печени; адреналин, глюкагон, СТГ и тироксин - понижают.
4) Глюконеогенез. Глюкоза может синтезироваться из различных соединений неуглеводной природы, таких как лактат, глицерин, некоторые метаболиты цитратного цикла и глюкопластические аминокислоты (глицин, аланин, серин, треонин, валин, аспарагиновая и глютаминовая кислоты, аргинин, пролин, гистидин, оксипролин). Глюконеогенез связывает между собой обмен белков и углеводов и обеспечивает жизнедеятельность при недостатке углеводов в пище. При печеночной недостаточности в результате угнетения глюконеогенеза, снижения содержания гликогена в печени, угнетения реакции гепатоцитов на глюкагон, увеличения содержания в крови инсулина (вследствие уменьшения его инактивации печенью) возникает гипогликемия.
Таким образом, можно выделить следующие причины гипогликемии при печеночной недостаточности:
а) угнетение глюконеогенеза всей печенью из-за снижения числа функционально интактных гепатоцитов;
б) падение содержания гликогена в печени;
в) угнетение реакции гепатоцитов на эффект глюкагона как стимулятора глюконеогенеза;
г) рост содержания в крови инсулина как следствие падения его инактивации печенью.
5) Образование глюкуроновой кислоты. С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ (фенолы, билирубин и др.) и образования смешанных полисахаридов (гиалуроновая кислота, гепарин и др.)
В основе нарушений обмена углеводов при болезнях печени лежат повреждения митохондрий, которые ведут к снижению окислительного фосфорилирования. Вторично страдают функции печени, требующие расхода энергии, - синтез белка, эстерификация стероидных гормонов. Дефицит углеводов приводит также к усилению анаэробного гликолиза, вследствие чего в клетках накапливаются кислые метаболиты, вызывающие снижение рН. Следствием этого являются разрушение лизосомальных мембран и выход в цитоплазму кислых гидролаз, вызывающих некроз гепатоцитов. Нарушение углеводного обмена при патологии печени проявляются гипогликемией натощак вследствие истощения депо гликогена в печени, снижением способности организма поддерживать нормальный уровень глюкозы в крови.
Нарушение липидного обмена
Печень играет ведущую роль в обмене липидных веществ – нейтральных жиров, жирных кислот, фосфолипидов, холестерина. Участие печени в обмене липидов тесно связано с ее желчевыделительной функцией: желчь активно участвует в ассимиляции жиров в кишечнике. При нарушении образования или выделения желчи жиры в повышенном количестве выделяются с калом. Желчь усиливает действие панкреатической липазы и вместе с рядом других веществ участвует в образовании хиломикронов. Гепатоциты с помощью микроворсинок непосредственно захватывают липиды из крови. В печени осуществляются следующие процессы обмена липидов: окисление триглицеридов, образование ацетоновых тел, синтез триглицеридов (ТГ) и фосфолипидов, синтез липопротеидов, холестерина.
Гидролиз ТГ на глицерин и жирные кислоты происходит под действием внутрипеченочных липолитических ферментов. Печень является центральным местом метаболизма жирных кислот. В ней происходит синтез жирных кислот и их расщепление до ацетил-кофермента А, а так же образование кетоновых тел, насыщение ненасыщенных жирных кислот и их включение в ресинтез нейтральных жиров и ФЛ с последующим выведением в кровь и желчь. Катаболизм жирных кислот осуществляется путем бета - окисления, основной реакцией которого является активирование жирной кислоты с участием кофермента А и АТФ. Освобождающийся ацетил-кофермент А подвергается полному окислению в митохондриях, в результате чего клетки обеспечиваются энергией.
Кетоновые тела (ацетоуксусная, бета – оксимасляная кислоты и ацетон) образуются исключительно в печени. Возникающий в патологических условиях кетоз связан с диссоциацией кетогенеза в печени и утилизацией кетоновых тел в других органах. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует важнейшие составные части клеточных мембран – различные ФЛ. Синтез нейтральных жиров и фосфолипидов связан главным образом с митохондриями, а также с гладкой эндоплазматической сетью.
Синтез холестерина в основном происходит в печени и кишечнике. Он представляет собой важную составную часть плазмы крови и используется для синтеза кортикостероидных гормонов, витамина Д, желчных кислот и липидных структур мембран. Основная масса холестерина синтезируется гладкой эндоплазматической сетью. Уровень холестерина поддерживается постоянным в результате синтеза, катаболизма и выведения избыточного количества с желчью в кишечник; пятая часть его выделяется с калом, а большая часть всасывается вновь, обеспечивая печеночно-клеточную циркуляцию. Печеночные клетки полностью ответственны за удаление избыточного количества холестерина с желчью. Нарушение печеночно-клеточной циркуляции вследствие окклюзии желчевыводящих путей приводит к резкому возрастанию синтеза желчных кислот из холестерина.
Если гепатоцеллюлярные болезни снижают число нормальных гепатоцитов до определенного уровня, то падение синтеза холестерина в печени преобладает над снижением его экскреции в просвет кишечника таким образом, что в сыворотке крови падает концентрация холестерина.
Если внешние по отношению к печени системные растройства обмена веществ приводит к гиперхолистеринемии, то печень начинает выделять с желчью больше холестерина, и его концентрация в желчном пузыре растет. Рост содержания холестерина в крови предрасполагает к формирования камней желчного пузыря.
В печени происходит синтез липопротеидов, особой транспортной формы ФЛ.
При повреждении гепатоцитов синтез ФЛ в них угнетается и накапливаются нейтральные липиды, что ведет к жировой дистрофии печени, при которой содержание ТГ может достигать 80% массы печени. В основе жирового перерождения печени лежат процессы, которые приводят к недостаточности окслительно-восстановительных реакций, что сопровождается снижением содержания АТФ в гепатоцитах, либо ведут к прямому повреждению структуры печеночных клеток.
Среди причин можно выделить следующие:
1) Нарушение кровоснабжения печени по системе печеночной артерии (при патологии сердца, анемиях, снижении ОЦК и т.д.);
2) Гипоксемии различного генеза;
3) Инфекционные, вирусные поражения гепатоцитов;
4) Действие токсических веществ (четыреххлористый углерод, фосфорорганические вещества: хлорофос, карбофос, и др.; хлороформ и пр.);
5) Углеводное голодание (сахарный диабет, полное голодание или длительное малокалорийное питание), поскольку именно глюкоза является основным поставщиком молекул АТФ;
6) Снижение интенсивности утилизации в печени жира (например, при длительном действии алкоголя);
7) Нарушение синтеза в печени белков, в том числе составляющих белковую часть транспортных липопротеидных комплексов, в результате чего превалирует образование ЛПНП и ЛПОНП;
8) Избыточный синтез жиров из углеводов ( при чрезмерном употреблении углеводов, перекрывающем энергетические потребности организма);
9) Нарушение синтеза ФЛ. Известно, что ФЛ значительно более «водорастворимы», чем жиры. Они быстро покидают гепатоциты, поскольку активно используются для новообразования клеточных и субклеточных мембран. Для синтеза же ФЛ кроме глицерина и жирных кислот нужна фосфорная кислота и азотистые основания, для образования которых необходимы метильные группировки, донаторами которых являются метионин и холин. Вот почему на ранних этапах жирового перерождения печени показано назначение последних.
10) Все случаи длительной гипергликемии (алиментарной, транспортной, ретенционной), что сопровождается поступление избыточного количества жира в гепатоциты.
При поражении гепатоцитов ингибируется процесс эстерификации холестерина и синтез холестерина, поэтому накапливается уксусная кислота, являющаяся субстратом для его образования. В большом количестве уксусная кислота проявляет цитотоксическое действие. Роль желчных кислот в обмене холестерина значительна, поэтому различные нарушения метаболизма желчных кислот сопровождаются серьезными нарушениями обмена холестерина.
В крови при патологии печени содержание эфиров холестерина снижено, а уровень свободного холестерина повышен.
Известно, что в печени происходит детоксикация жирных кислот с короткой цепью (ЖККЦ), образующихся в кишечнике под влиянием бактериальной флоры ( бутановая, валериановая, капроновая и др.).
Нарушение функции печени сопровождается увеличением содержание не только ЖККЦ, но и жирных кислот с длинной цепью. Для головного мозга наиболее токсичнее бутановая и изовалериановая кислоты. ЖККЦ транспортируются альбумином, поэтому в условиях гипоальбуминемии ЖККЦ накапливаются в тканях мозга и синапсах. При избыточном образовании ЖККЦ связывающие способности альбуминов могут быть исчерпаны.
ЖКККЦ ингибирует синтез мочевины и активность глутаминовой дегидрогеназы (два основных пути утилизации аммиака), нарастает гипераммониемия. Они обладают способностью потенциировать токсическое действие аммиака, и их синергический эффект оказывается значительно выше. ЖККЦ оказывают прямое воздействие на нейронные и синаптические мембраны, блокируя транспорт ионов на мембране нейрона и, соответственно, проведение импульсов.
Дата: 2019-05-28, просмотров: 182.