Находится оценка уравнения регрессии вида
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

y*=b0+b1x1+b2x2+…+bjxj+…+bkxk.

Cогласно методу наименьших квадратов вектор оценок коэффициентов регрессии определяется по формуле

b=(XTX)-1XTY ,

где

  1 x11 x1k   y1   b0
  . .   .   .   .
  . .   .   .   .
X= 1 xi1 xik Y= yi b= bj
  . .   .   .   .
  . .   .   .   .
  1 xn1 xnk   yn   bk

XT – транспонированная матрица X; (XTX)–1 – матрица, обратная к матрице XTX.

    Оценка ковариационной матрицы коэффициентов регрессии вектора b определяется из выражения

S*(b)=S*2(XTX)1,

где S*2=(Y-Xb)T(Y-Xb)/(n-k-1).

    Учитывая, что на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов регрессии, имеем

S*2b(j–1)= S*2[(XTX)1]jj для j=1,2,…,k, k+1.

    Значимость уравнения регрессии, т.е. гипотеза H0: b=0 (b0=b1=…=bk=0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле

Fнабл=(QR/(k+1))/(Qост/(n-k-1)),

где QR=(Xb)T(Xb), Qост=(Y-Xb)T(Y-Xb).

    По таблице F-распределения (Приложение 1) для заданных a, n1=k+1, n2=n-k-1 находят Fкр.

    Гипотеза H0 отклоняется с вероятностью a, если Fнабл>Fкр. Из этого следует, что уравнение является значимым, т.е. хотя бы один из коэффициентов регрессии отличен от нуля.

    Для проверки значимости отдельных коэффициентов регрессии, т.е. гипотез H0: bj=0, где j=1,2,…,k, используют t-критерий и вычисляют tнабл(bj)=bj/S*bj. По таблице t-распределения (Приложение 1) для заданных a, n=n-k-1 находят tкр.

    Гипотеза H0 отвергается с вероятностью ошибки a, если êtнабл ê>tкр. Из этого следует, что соответствующий коэффициент регрессии bj значим, т.е. bj ¹ 0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. После этого реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначимых переменных, которой соответствует минимальное по абсолютной величине значение tнабл. После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимыми коэффициентами.

Для решения задачи требуется:

1. Найти оценку уравнения регрессии вида y=b0+b1x1+b2x2.

2. Проверить значимость уравнения регрессии при a=0,05 или a=0,01.

3. Проверить значимость коэффициентов регрессии.

4. Дать экономическую интерпретацию коэффициентам регрессии и оценить адекватность полученной модели по величине абсолютных ei и относительных di отклонений.

5. При необходимости перейти к алгоритму пошагового регрессионного анализа, отбросив один из незначительных коэффициентов регрессии.

6. Построить матрицы парных и частных коэффициентов корреляции.

7. Найти множественные коэффициенты корреляции и детерминации.

8. Проверить значимость частных и множественных коэффициентов корреляции.

9. Провести содержательный экономический анализ полученных результатов.

 

 

Пример решения задачи 1

 

По данным годовых отчетов десяти (n=10) предприятий (табл.4) провести анализ зависимости себестоимости товарной продукции y (млн. р.) от объема валовой продукции x1  (млн. р.) и производительности труда x2 (тыс. р. на чел.).

Таблица 4

Исходная информация для анализа и результаты расчета

 

Исходная информация

Результаты расчета

№ xi1 xi2 yi y*i (y*i)2 ei=yi-y*i (ei)2 di= ei / y*i 1 3 1,8 2,1 2,31572 5,36255 -0,21572 0,04653 -0,09315 2 4 1,5 2,8 3,48755 12,16300 -0,68755 0,47273 -0,19714 3 5 1,4 3,2 4,35777 18,99015 -1,15777 1,34043 -0,26568 4 5 1,3 4,5 4,50907 20,33171 -0,00907 0,00008 -0,00201 5 5 1,3 4,8 4,50907 20,33171 0,29093 0,08464 0,064521 6 5 1,5 4,9 4,20647 17,69439 0,69353 0,48098 0,164872 7 6 1,6 5,5 4,77408 22,79184 0,72592 0,52696 0,152054

 

Окончание табл. 4

 

Исходная информация

Результаты расчета

xi1 xi2 yi y*i (y*i)2 ei=yi-y*i (ei)2 di= ei / y*i
8 7 1,2 6,5 6,09821 37,18816 0,40179 0,16144 0,065887
9 15 1,3 12,1 11,6982 136,84905 0,40175 0,16140 0,034343
10 20 1,2 15,0 15,4441 238,52177 -0,44415 0,19727 -0,02876
 

Сред. знач.

S= 530,22437 S= 3,47247  
  7,5 1,41 6,14          

y*i – значения, вычисленные по уравнению регрессии

ei – абсолютные ошибки аппроксимации

di – относительные ошибки аппроксимации

Решение

 

1. Определение вектора b оценок коэффициентов

уравнения регрессии

 

Расчет оценок коэффициентов уравнения регрессии y*=b0+b1x1+b2x2 производится по уравнению b=(XTX)–1XTY:

 

  n Sxi1 Sxi2   10 75 14,1
XTX = Sxi1 Sx2i1 Sxi1xi2 = 75 835 100,4
  Sxi2 Sxi1xi2 Sx2i2   14,1 100,4 20,21

 

  Syi   61,4   b0   2,88142
XTY = Sxi1yi = 664,5 b = b1 = 0,71892
  Sxi2yi   82,23   b2   -1,51303

Таким образом, оценка уравнения регрессии примет вид

 

y*=2,88142+0,71892x1-1,51303x2.

 

2. Проверка значимости уравнения y*=2,88142+0,71892x1-1,51303x2.

 

а) QR=(Xb)T(Xb)=Sy*i =530,224365;

б) Qост=(Y-Xb)T(Y-Xb)= Se2i =3,472465;

в) несмещенная оценка остаточной дисперсии:

S*2= Qост/(n-3)=3,472465 / 7 = 0,496066;

г) оценка среднеквадратичного отклонения:

S*= 0,7043195;

д) проверяем на уровне a=0,05 значимость уравнения регрессии, т.е. гипотезу H0: b=0 (b0=b1=b2=0). Для этого вычисляем

 

Fнабл=(QR/(k+1))/(Qост/(n-k-1))=(530,224365 / 3))/(3,472465 / 7))=356,32776.

 

Далее по таблице F-распределения для a=0,05, n1=k+1=3, n2=n-k-1=7 находим Fкр=4,35. Так как Fнабл>Fкр (356,32776>4,35), то гипотеза H0 отвергается с вероятностью ошибки 0,05. Т.о. уравнение является значимым.

 

3. Проверка значимости отдельных коэффициентов регрессии

 

а) Найдем оценку ковариационной матрицы вектора b:

 

5,52259 -0,08136 -3,44878
S*(b)=S*2(XTX)1=0,496066(XTX)1= -0,08136 0,00267 0,04348
-3,44878 0,04348 2,21466

 

Так как на главной диагонали ковариационной матрицы находятся дисперсии коэффициентов уравнения регрессии, то получим следующие несмещенные оценки этих дисперсий:

 

S*2b0=5,52259; S*2b1=0,00267; S*2b0=2,21466;

S*b0=2,35002; S*b1=0,05171; S*b2=1,48818.

Найдем оценку корреляционной матрицы вектора b. Элементы этой матрицы определяются по формуле:

rj-1l-1=cov*(bj-1,bl-1)/(S*bj-1S*bl-1),

где cov*(bj-1,bl-1) – элементы матрицы S*(b), стоящие на пересечении j-той строки и l -того столбца ( j,l =1,2,3).

Корреляционная матрица вектора b имеет вид:

 

1 -0,66955 -0,98614
R*(b)= -0,66955 1 0,56504
-0,98614 0,56504 1

 

Далее, для проверки значимости отдельных коэффициентов регрессии, т.е. гипотез H0: bm=0 (m=1,2), по таблицам t-распределения для a=0,05, n=7 находим tкр=2,365. Вычисляем tнабл для каждого из коэффициентов регрессии по формуле tнабл(bj)=bj/S*bj:

 

tнабл(b1)=b1/S*b1=0,71892/0,05171=13,903

tнабл(b2)=b2/S*b2=1,51303/1,48818=1,01667.

 

Так как tнабл(b1) > tкр (13,903 > 2,365), tнабл(b2) < tкр (1,01667< 2,365), то коэффициент регрессии b1¹0, а коэффициент регрессии b2=0. Следовательно переходим к алгоритму пошагового регрессионного анализа.

 

4. Пошаговый регрессионный анализ

 

Будем рассматривать оценку нового уравнения регрессии вида

y*=b’0+b’1x1. Вектор оценок b’ определим по формуле b=(XT ¢ X ¢ )–1XT ¢ Y, где

 

  n Sxi1   10 75
XT¢X¢ = Sxi1 Sx2i1 = 75 835

 

  Syi   61,4   b’0   0,52534
XT¢Y¢ = Sxiyi = 664,5 b¢ = b’1 = 0,74861

 

Таким образом, оценка уравнения регрессии примет вид:

y*=0,52534+0,74861x1.

Повторив далее вычисления по пп 2 и 3, определяем, что новая оценка уравнения регрессии и его коэффициент значимы при a=0,05.

 

5. Нахождение матрицы парных коэффициентов корреляции

(на примере без исключения переменной)

а) находим вектор средних:

X ср=(x1ср; x2ср; yср)=(7,5; 1,41; 6,14);

б) находим вектор среднеквадратических отклонений S=(s1; s2; sy) по формуле sj=([S(xij - xjср)2]/n)0,5, i=1…n:

S=(5,22; 0,18; 3,91);

в) формируем корреляционную матрицу

 

1 r12 r1y
R= r21 1 r2y
ry1 ry2 1

 

где r12=r21=[(x1x2)ср-x1срx2ср]/(s1s2), ryj=rjy=[(xjy)ср-xjсрyср]/(sjsy):

 

1 -0,565 0,997
R= -0,565 1 -0,612
0,997 -0,612 1

 

6. Расчет оценок частных коэффициентов корреляции

 

Оценки частных коэффициентов корреляции определяются по формулам:

 

r12/y=(r12-r1yr2y)/[(1-r1y2)(1-r2y2)]0,5 =0,738;

r1y/2=(r1y-r12ry2)/[(1-r122)(1-ry22)]0,5 =0,998;

r2y/1=(r1y-r12ry2)/[(1-r122)(1-ry22)]0,5 =-0,762.

 

Составим матрицу частных коэффициентов корреляции:

 

1 0,738 0,998
0,738 1 –0,762
0,998 –0,762 1

 

Следует иметь в виду, что частный коэффициент корреляции может резко отличаться от соответствующего парного коэффициента и даже иметь противоположный знак. Любой из частных коэффициентов может быть равен нулю, в то время, как парный – отличен от нуля.

В данном примере r12/y=0,738, а r12=-0,565. Такое различие вызвано тесной связью объема валовой продукции (x1) и себестоимостью товарной продукции (y): r1y=0,997. В случае независимости величин частный и парный коэффициенты корреляции равны нулю.

7. Проверка значимости парных и частных

коэффициентов корреляции

 

Проверка осуществляется с помощью таблиц t-распределения Стьюдента.

Для r12: |tнабл|=|(10-2)0,5(-0,565)/(1-(-0,565)2)0,5|=1,93683<tкр(8;0,05)=2,306; гипотеза H0: r12=0 принимается с вероятностью ошибки 0,05; отвергается с вероятностью ошибки 0,1 (|tнабл|=1,93683>tкр(8;0,1)=1,86).

Для r2y: |tнабл|=|(10-2)0,5(-0,612)/(1-(-0,612)2)0,5|=2,20621<tкр(8;0,05)=2,306; гипотеза H0: r2y=0 принимается с вероятностью ошибки 0,05; отвергается с вероятностью ошибки 0,1 (|tнабл|=1,93683 > tкр(8;0,1)=1,86).

Для r1y: |tнабл|=|(10-2)0,50,997/(1-0,9972)0,5|=36,43263>tкр(8;0,05)=2,306; гипотеза H0: r1y=0 отвергается с вероятностью ошибки 0,05.

Для r12/y: |tнабл|=|(n-3)0,50,738/(1-0,7382)0,5|=2,893542>tкр(7;0,05)=2,365; гипотеза H0: r12/y=0 отвергается с вероятностью ошибки 0,05.

Для r1y/2: |tнабл|=|(n-3)0,50,998/(1-0,9982)0,5|=41,77023>tкр(7;0,05)=2,365; гипотеза H0: r1y/2=0 отвергается с вероятностью ошибки 0,05.

Для r2y/1: |tнабл|=|(n-3)0,5(-0,762)/(1-(-0,762)2)0,5|=3,11324>tкр(7;0,05)=2,365; гипотеза H0: r2y/1=0 отвергается с вероятностью ошибки 0,05.

 

 

8. Расчет оценок множественных коэффициентов

корреляции и детерминации

 

Оценки множественных коэффициентов корреляции детерминации рассчитываются по формулам:

ry/12 = (ry12+ ry22+ 2ry1ry2r12)/(1-r122)(1-ry22)]0,5 =0,999;

ry/122 =0,9992=0,997.

 

9. Проверка значимости множественных коэффициентов

корреляции и детерминации

 

Проверим гипотезу H0: r2y/12 =0 по F-критерию. Наблюдаемое значение находится по формуле:

Fнабл= [r2y/12/(k-1)]/[(1-ry/12)/(n-k)]=[0,997/(3-1)]/[(1-0,997)/(10-3)]=1163.

По таблице F-распределения для a=0,05, n1=k-1=2, n2=n-k=7 находим Fкр=4,74. Так как Fнабл>Fкр, то гипотеза о равенстве r2y/12 =0 отвергается.

Аналогично осуществляется проверка гипотезы ry/12=0 (в данном примере опущено).

Тем самым доказана значимость множественного коэффициента корреляции, что говорит о наличии зависимости y от x1 и x2, т.е. себестоимость действительно зависит от объема валовой продукции и производительности труда.

 

Литература к задаче 1

 

1. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей.–М.:Финансы и статистика, 1985

2. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Основы моделирования и первичной обработки данных.–М.:Финансы и статистика, 1983

3. Львовский Е.Н. Статистические методы построения эмпирических формул.–М.:Высш.шк., 1988.

4. Шепелев И.Г. Математические методы и модели управления в строительстве.–М.:Высшая школа, 1980.

 

Задача 2

 

Динамическое программирование

 

Для увеличения объемов выпуска пользующейся повышенным спросом продукции, изготавливаемой тремя предприятиями, выделены капитальные вложения в объеме 700 млн.руб. Использование i-тым предприятием xi млн. руб. из указанных средств обеспечивает прирост выпуска продукции, определяемый значением нелинейной функции fi(xi).

Найти распределение капитальных вложений между предприятиями, обеспечивающее максимальное увеличение выпус6ка продукции.

Исходные данные приведены в таблицах 5 и 6.

Таблица 5

Исходные данные

Объем кап.вложений xi, млн.руб.

Прирост выпуска продукции fi(xi), млн.руб.

  Предприятие 1 Предприятие 2 Предприятие 3
0 0 0 0
100 а 50 40
200 50 80 d
300 b 90 110
400 110 150 120
500 170 с 180
600 180 210 220
700 210 220 240

 

Таблица 6

Варианты исходных данных

Вариант a b c d
1 30 90 190 50
2 20 80 160 70
3 35 100 190 60
4 40 110 180 90
5 30 100 190 60

 

Окончание табл. 6

Вариант a b c d
6 35 80 160 70
7 40 80 160 70
8 40 100 190 60
9 30 110 160 90
10 40 110 190 90
11 20 100 190 60
12 20 80 180 60
13 35 110 190 50
14 40 90 160 50
15 30 90 190 90
16 35 90 160 70
17 40 90 190 50
18 20 90 150 90
19 20 80 190 60
20 20 110 160 70
21 40 90 190 60
22 30 110 190 55
23 35 90 180 70
24 45 85 170 90
25 40 85 170 50

В задаче необходимо:

1. Составить рекуррентное соотношение Беллмана в виде функциональных уравнений.

2. Используя рекуррентные соотношения и исходные данные определить сначала условно оптимальные, а затем оптимальные распределения капиталовложений между предприятиями.

 

Дата: 2019-05-28, просмотров: 195.