Теория распределения мест. Проблема дифференцированного подхода
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Проблема автоматизированного распределения мест на олимпиадах не нова. Существуют определенные системы распределения мест во многих странах мира (например, в США), и все они имеют ряд очевидных преимуществ по сравнению со стандартной схемой.

Первое (и самое главное) преимущество – отсутствие «человеческого фактора» при этой процедуре. Машине чужды эмоции, она бесстрастна, а что еще нужно для грамотной постановки вопроса. К тому же, в связи с широким, в последние 5 лет, распространением компьютерной техники в России, разработка таких систем является достаточно перспективной областью.

Второе преимущество – это так называемый «фактор времени». Всем известно, что любая школьная (городская, областная и т.д.) олимпиада – это дело долгое. Сначала участники выполняют задания, потом жюри оценивает их, а далее следует процесс сортировки работ по местам, причем, чем больше участников на олимпиаде, тем больше времени этот процесс занимает. В школе это время небольшое, но в масштабах области или страны это может занять очень много времени. Машина же выполняет этот процесс гораздо быстрее, и время на сортировку можно сократить на порядок, а то и два.

Скажем сразу – полностью автоматизированной системы для проведения олимпиад, их оценки, распределения мест нет, хотя проекты такие существуют. Машина пока может лишь работать с данными, которые в нее вводит человек. В будущем, возможно, будут созданы системы, которые сами будут проверять задания, оценивать их, распределять места и т.д., а человек будет лишь контролировать эту деятельность и пожинать ее плоды.

Вот к чему на данном этапе все стремятся, однако это не так просто как кажется. Поэтому мы остановились на обычной системе, работающей с протоколом, который вводится оператором. Исходя из данных, которые содержатся в этом протоколе, программа получает конечный результат и визуализирует его, но об этом ниже.

Теперь немного теории. 

Распределение участников олимпиады по занимаемым местам происхо­дит на заключительной стадии олимпиады. Именно здесь определяются при­зеры, представляемые к награждению, и участники, допускаемые к выходу на следующий этап олимпиады. Отвечает за распределение мест обычно пред­седатель предметного жюри.

Фактическую базу, определяющую распределение мест, образуют итоги олимпиады, отражающие успехи школьников в решении олимпиадных задач. Обычно их представляют в виде (1):

x 1 , x 2 , x 3 , …, xi , …, xn , (1)

где xi = 0, 1, 2, …, m – баллы, набранные участником за задачу с номером i.

Распределение мест непосредственно проводят не по итогам решения от­дельных задач (1), а по некоторым показателям ή1, ή2, ή3, ..., характеризу­ющим выполнение олимпиадного задания в целом:

(ή1, ή2, ή3, ...)=║П║( x1, x2, x3, …) (2)

где ║П║ − некоторые преобразования, переводящие описание итогов олимпиа­ды с языка переменных х1,х2,х3,… (равных набранным баллам за отдельно взятые задачи), на язык показателей ή1, ή2, ή3, ...,  характеризующих выпол­нение всего олимпиадного задания.

Показатели ή1, ή2, ή3, ..., определяющие распределение мест, удобно называть показателями приоритета. Одним из таких показателей, как изве­стно, является суммарный балл:

S=х1+х2+х3 + ... + хi +... + х n    (3)

В общем, порядок распределения участников соревнования по мес­там при множественном числе показателей приоритета определяется выбо­ром самих показателей ή1, ή2, ή3, ..., их числом l и логикой приоритета, определяющей место участника олимпиады в соответствии с численными значениями показателей ή1, ή2, ή3, ... . С формальной стороны использова­ние нескольких показателей при выстраивании какой-либо одномерной оче­редности объектов не создает больших сложностей. Для этого достаточно один показателей считать «главным», второй − «второстепенным», третий − «третьестепенным» и т.д. При распределении мест главный показатель ή1 следует принимать во внимание в первую очередь, второстепенный ή2 при равенстве главных, а третьестепенный ή3 при одновременном равенстве главных и второстепенных показателей и т.д.

Подобное распределение очень часто используется в спорте. Примером того может служить распределение футбольных команд по итогам чемпионата, которое проводят по двум показателям − по числу набранных очков (главный показатель) и по разнице между забитыми и пропущенными мячами (второстепенный показатель).

Однако это только формальная сторона дела. Вся сложность проблемы заключается в том, что ввести отмеченную иерархию показателей приоритета («главный», «второстепенный» и т.д.) достаточно непросто. Особенность ситуации состоит в том, что формальная логика распределения мест при множе­ственном числе показателей

l≥2       (4)

оказывается внутренне противоречивой. Данное противоречие кроется в равноправной возможности двух подходов к распределению мест между участниками олимпиады − одного с ориентацией на большее удаление от «абсо­лютного аутсайдера» (участника, не набравшего ни одного балла), другого с ориентацией на наибольшее приближение к «абсолютному лидеру» (участни­ку, давшему исчерпывающее решение всех задач),

Отмеченное противоречие не имеет места при одном показателе приори­тета ή1. В этом случае каждый участник, набирая баллы по задачам и удаляясь от аутсайдера, неминуемо приближается к лидеру.

Подобная однозначность, как это ни странно, не является достоинством. Достаточно вспомнить, что распределению подвергаются не абстрактные объекты, а школьники. Распределение по местам подростков и юношей, отя­гощенных комплексом проблем своего возраста, можно проводить лишь с учетом соображений психолого-педагогического характера, которые по сво­ей сути являются вариативными, зависящими от конкретной ситуации. При одном показателе приоритета условий для подобной вариативности, а соот­ветственно и для дифференцированного подхода нет. Все однозначно опреде­ляется формальной логикой, а соображения психолого-педагогического ха­рактера просто некуда включить.

 Однако руководствоваться соображениями только формальной логики нельзя. Данная ситуация представляется чрезвычайно интересной. Ее уникальность заключается в том, что она соответствует условиям, когда необходимо привлечение педагогических соображений к распределению мест. Понятна и роль, отводимая при этом педагогике. Это роль «третейского суда», который в рамках сложившегося противоречия может стать на одну из двух взаимоисключающих точек зре­ния, руководствуясь соображениями педагогической целесообразности.

Ситуация соответствует случаю, когда возможный порядок распределения мест таков, что приоритет численных значений пока­зателя ή1, определяется формальной логикой, а приоритет значений показате­ля ή2 − педагогической целесообразностью. В силу вариативного характера педагогических соображений данное распределение можно провести диффе­ренцированно, меняя точку зрения на приоритет значений ή2 по отношению к каким-то выделенным группам школьников.

Отмеченные «взаимоотношения» показателей ή1 и ή2 говорят о логическом главенстве ή1. При распределении мест его необходимо рассматривать в качестве главного показателя и принимать во внимание в первую очередь, а показатель ή2 − в качестве второстепенного и учитывать лишь при равенстве значений ή1.

Приведенные выше соображения говорят о том, что дифференцирован­ный подход к участникам олимпиады в рамках ее регламента вполне возмо­жен. Он может быть реализован лишь на стадии распределения мест, но толь­ко в том случае, когда оно проводится по нескольким показателям приоритета (4). Одного главного показателя ή1, определяющего приоритет выполнен­ного задания с позиций формальной логики, для этого недостаточно. Педаго­гические соображения, обеспечивающие дифференцированный характер рас­пределения мест, могут быть учтены лишь с помощью второго, третьего и других показателей более высокой степени.

Смысл главного показателя приоритета ή1 вполне ясен. Суммарный балл (3) способен испол­нять роль лишь главного показателя приоритета ή1, и в принципе не может служить предметной базой для дифференцированного подхода.

Возможность использования величины ή2= x1x2 (5) в качестве второстепенного показателя приоритета, дополняющего суммарный балл ή1 (4), достаточно очевидна. Если суммарный балл ή1 определяет выполнение задания с количественной стороны, то показатель ή2 (5) характеризует качество выполнения задания. Он показывает, в решении какой из задач (простой или сложной) участник больше преуспел.

Множественный характер показателей приоритета является свидетельством самой возможности дифференцированного подхода. С этой точки зрения соотношение (4) можно рассматривать как необходимое условие, определяющее соответствие используемой системы распределения мест требованиям дифференцированного подхода. Следует отметить, что в условиях рязанских региональных олимпиад условие (4) никогда не выполнялось. Места тради­ционно распределялись с использованием лишь одного показателя приорите­та - суммарного балла S (3), что не дает никаких оснований даже говорить о дифференцированном подходе.

В общепедагогическом плане пренебрежение дифференцированным подходом может вызывать лишь глубокое сожаление. Олимпиада, являясь педа­гогическим мероприятием, должна заниматься не только констатацией спо­собностей участников на момент ее проведения, но и заботиться о создании мотивационной базы для развития скрытых потенциальных возможностей учащихся. В первую очередь, здесь следует обращать внимание на участников, которые выступили на олимпиаде пока еще не совсем удачно. Этих школьни­ков необходимо поддержать и отметить хотя бы самые малые их успехи на олимпиаде, подкрепив все соответствующим поощрением по соображениям педагогического характера. Дифференцированный подход к распределению мест, возможный при выполнении соотношения (4), создает для этого все необходимые условия.

Следует отметить, что введение множественного числа показателей при­оритета, определяющих саму возможность дифференцированного подхода, не может быть произвольным. Для этого необходимы различаемые этапы ре­шения задач или различаемые задачи (что несколько предпочтительнее). Имен­но по этой причине для олимпиады должны быть использованы разноуровневые задачи (2). Только различие этих за­дач сделало понятным смысл ή2 (5) как показателя поляризации способ­ностей школьника. Для одноуровневых неразличимых задач показатель ή2 (в отличие от ή1, характеризующий выполнение задания с количественной стороны) потерял бы всякий смысл, что сделало бы невозможным его использование как показателя приоритета.

В нашем случае мы ограничиваемся лишь тремя показателями приоритета ή1, ή2 и ή3 при распределении мест, чего вполне достаточно для нашей задачи. Смысл этих показателей достаточно прозрачен. Показатель ή1, как показано выше, тождественен суммарному баллу и сам по себе не может быть использован в качестве критерия для распределения мест. Показатель ή2 характеризует успехи школьника в репродуктивно-продуктивной деятельности по сравнению со средним арифметическим значением его успе­хов за отдельно взятые испытания репродуктивного и продуктивного харак­тера. Он показывает, насколько соединение способностей школьника отлича­ется от их простого арифметического сложения. Показатель же ή3 характеризует поляризацию способностей школьника, представляя его достижения в решении творческих задач, рассчитанных на продуктивную деятельность, в сравнении с успехами в решении типовых задач, носящих репродуктивный характер. Все три показателя являются целыми числами, что существенно облегчает процесс расчета.

 Таким образом, имея результаты олимпиады (или, например, сессии), можно точно подсчитать эти три показателя, исходя из них, можно с большой точностью говорить о распределении мест. Здесь возникает еще один вопрос: какой из показателей главный, а какие второстепенный и третьестепенный? Частично эта проблема решена выше, но там описывались только два параметра. Решение здесь может быть таким. Необходимо вводить несколько «дифференцированных подходов» на базе значений показателя ή1 (так как он является основным и главным для других). Если значения ή1 для большей части (или для всех) участников отрицательны (это говорит о потенциальной слабости испытуемого коллектива), то имеет смысл за второстепенный показатель принять ή2, а за третьестепенный – ή3. Проще говоря, в этом случае мы акцентируем внимание на репродуктивные (типовые) задачи, которые, по логике вещей, участники должны решить. Продуктивные (творческие) же задачи мы как бы не учитываем вообще в силу того, что такой коллектив может их не решить вообще. Например, таким ансамблем является коллектив школьников, представленный в программе в базе dbolymp1. Это условно первый вариант дифференцированного подхода.

 Возможен вариант, что значения ή1 для всех участников только равны нулю или положительны (это признак сильного коллектива). В этом случае за второстепенный показатель приоритета имеет смысл принять ή3, а за третьестепенный – ή2. Другими словами, здесь мы делаем упор именно на продуктивные задачи (они обычно сложнее), а решение типовых задач считаем саморазумеющимся. Этот подход можно назвать вторым методом дифференцированного подхода.

 И, наконец, самый интересный случай –  ή1 для всех участников принимает и нулевые, и положительные, и отрицательные значения. Здесь процесс распределения мест несколько усложняется, так как во всем количестве участников присутствуют и потенциально сильные ученики, и слабые. Понятно, что всех их сортировать только одним из способов нельзя (исчезает главный принцип дифференцированного подхода), поэтому мы прибегаем к комбинационному методу. Суть метода такова. Все многообразие участников делится пополам, исходя из значений ή1. Тех участников, у которых ή1≥0, относят к условно «сильной» группе и для сортировки используют метод ή1 ή3 ή2. Те же участники, у которых ή1<0, попадают в условно «слабую» группу, и для этой группы используют метод ή1 ή2 ή3. Таким образом достигается полная реализация принципов дифференцированного подхода. Реально, олимпиадных коллективов с такой комбинацией значений параметра ή1, практически не встречается. Это можно отнести к минусу составителей олимпиадных заданий, а можно – к учителям, которые готовят школьников к олимпиадам. Это самый общий принцип дифференцированного подхода. Мы назовем его условно третьим методом. Этот метод, вообще говоря, применим всегда, так как видно, что он является сочетанием первых двух методов. Поэтому, всегда рекомендуется использовать именно его. В частности, разработанная система не требует вмешательства пользователя в процесс выбора типа метода, сама выбирает необходимый и сортирует, придерживаясь этого типа.

Сложно сказать, что должно быть в идеальном случае. С одной стороны, если сильных участников будет много – это хорошо. С другой стороны – можно с полной уверенностью сказать о том, что всегда будут и сильные, и слабые ученики. Единственное, о чем можно точно говорить – модель, которая использовалась при построении теории, базируется на последнем варианте распределения.

Это было краткое введение в теорию распределения мест, которая использовалась при создании автоматизированной системы. Теперь, опять же с точки зрения теории, рассмотрим проблему оценки уровня качества олимпиадных заданий, что тоже в дальнейшем понадобится.

 

Дата: 2019-05-28, просмотров: 174.