Тиристором .называется полупроводниковый прибор на основе четырехслойной структуры р-n-р-n, имеющий три р-n перехода. Напряжения подводятся так, что крайние переходы работают в прямом направлении, а средний - в обратном направлении. Прибор обладает свойством диода.
Все тиристоры между собой отличаются несколькими характеристиками. Сюда можно отнести быстродействие, процесс управления, направление токов и другие.Если у прибора сделаны выводы только от крайних областей структуры, то он называется диодным тиристором или динистором.Триодный тиристор, или просто тиристор, включается импульсами тока управления, а выключается или подачей обратного напряжения или прерыванием тока с помощью другого аппарата.Запираемый тиристор выключается с помощью импульсов тока управления.
Симистор (симметричный тиристор) является эквивалентом встречно-параллельного соединения двух тиристоров и способен при открытом состояние пропускать ток в обоих направлениях. Включение происходит импульсами тока управления.
Оптронный тиристор включается с помощью светового сигнала.
Тиристоры работают как ключи в импульсных режимах с токами, значительно превышающими допустимые постоянные токи в открытом состоянии. Предназначены для применения в схемах преобразователей электрической энергии, импульсных модуляторов, бесконтактной регулирующей аппаратуры, избирательных и импульсных усилителей, генераторов гармоничных колебаний, инверторов и других схем, выполняющих коммутационные функции.
Основные свойства тиристора:
- тиристор проводит ток только в одном направлении, как и диод, а так же проявляет себя как выпрямитель;
- тиристор переводят из выключенного состояния во включенное, при помощи подачи сигнала на специальный управляющий электрод и поэтому он как выключатель имеет два фиксированных состояния. Но есть некоторое условие, чтоб провести тиристор в обратное включенное или выключенное состояние, необходимо выполнить специальные функции;
- для того чтобы управлять тиристором необходим совершенно маленький ток всего несколько миллиампер. Следовательно, можно сделать вывод, что тиристор обладает свойствами усиливать ток;
- тиристор может служить регулятором мощности, ведь в последовательную цепь с тиристором можно использовать среднюю нагрузку, а на выходе она станет больше.
42.Биополярные транзисторы .
Биполя́рныйтранзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный).
Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке. Электрод, подключённый к среднему слою, называют базой, электроды, подключённые ко внешним слоям, называют эмиттером и 'коллектором'. С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы. Но практически, при изготовлении транзисторов, для улучшения электрических параметров прибора они существенно различаются степенью легирования примесями. Эмиттерный слой сильно легированный, коллекторный легируется слабо, что обеспечивает повышение допустимого коллекторного напряжения. Величина пробойного обратного напряжения эмиттерного перехода некритична, так как обычно в электронных схемах транзисторы работают с прямосмещенным эмиттерным P-n-переходом, кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Кроме того, площадь коллекторного P-n-перехода при изготовлении делается существенно больше площади эмиттерного перехода, что обеспечивает лучший сбор неосновных носителей из базового слоя и улучшает коэффициент передачи.Для повышения быстродействия (частотных параметров) биполярного транзистора толщину базового слоя нужно делать тоньше, так как толщиной базового слоя, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей, но, при снижении толщины базы, снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.
Обозначение биполярных транзисторов на схемах:
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B (Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое электрическое сопротивление. Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение).
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[2]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.
Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.
Дата: 2019-03-05, просмотров: 250.