Понятие стресса. Виды и стадии развития стресса по Г. Селье. Стрессреализующие и стресслимитирующие системы. Профилактика психоэмоционального стресса
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Стресс - это реакция человеческого организма, возникающая в ответ на действие раздражителя независимо от того, какой он несет заряд - отрицательный или положительный. Быстрый темп современной жизни и появление новых потребностей приводят к тому, что раздражителей становится все больше, а нагрузка, которую нам приходится переносить, невероятно возрастает.                                                                                                                Виды:                                                                                                                                                                            

•        Полезные стрессы, или эустрессы - понятие имеет два значения — «стресс, вызванный положительными эмоциями» и «несильный стресс, мобилизующий организм».                                                                                       

•        Вредные стрессы, или дистрессы, возникают, когда напряжение достигает критической точки, когда нет больше сил бороться с ним. От стресса страдает иммунная система. В стрессовом состоянии люди чаще оказываются жертвами инфекции, поскольку продукция иммунных клеток заметно падает в период физического или психического стресса.                                                                                                     

Эмоциональным стрессом называют эмоциональные процессы, сопровождающие стресс, и ведущие к неблагоприятным изменениям в организме. Во время стресса, эмоциональная реакция развивается раньше других, активизируя вегетативную нервную систему и её эндокринное обеспечение. При длительном или многократно повторяющемся стрессе эмоциональное возбуждение может застаиваться, а функционирование организма — разлаживаться.                                                                                                                    

Психологический стресс, как вид стресса, понимается разными авторами по-разному, но многие авторы определяют его как стресс, обусловленный социальными факторами.                                                                            По характеру воздействия выделяют нервно-психический, тепловой или холодовой, световой и другие стрессы.

 Адаптационный синдром - совокупность адаптационных реакций организма человека, носящих общий защитный характер и возникающих в ответ на стрессоры - значительные по силе и продолжительности неблагоприятные воздействия.

Адаптационный синдром - это процесс, закономерно протекающий в трех стадиях, которые носят название стадии развития стресса:                                                                                                            

1.       Стадия “тревоги” (аларм-реакция, стадия мобилизации) - мобилизация адаптационных ресурсов организма. Продолжается от нескольких часов до двух суток и включает две фазы: 1) фаза шока - общее расстройство функций организма вследствие психического потрясения или физического повреждения.

2) фаза “противошока”. При достаточной силе стрессора фаза шока заканчивается гибелью организма в течение первых часов или дней. Если адаптационные возможности организма способны противостоять стрессору, то наступает фаза противошока, где происходит мобилизация защитных реакций организма. Человек находится в состоянии напряженности и настороженности. Ни один организм не может постоянно находиться в состоянии тревоги. Если стрессогенный фактор слишком силен или продолжает свое действие, наступает следующая стадия.

2.       Стадия резистентности (сопротивления). Включает в себя сбалансированное расходование адаптационных резервов, поддерживается существование организма в условиях повышенных требований к его адаптационным возможностям. “Продолжительность периода сопротивления зависит от врожденной приспособленности организма и от силы стрессора”.

Эта стадия приводит либо к стабилизации состояния и выздоровлению, либо, если стрессор продолжает действовать еще дольше, сменяется последней стадией - истощения.

3.       Стадия истощения - утрата резистентности, истощение психических и физических ресурсов организма. Возникает несоответствие стрессогенных воздействий среды и ответов организма на эти требования.

Стрессреализующие системы.

Механизмы приспособления к воздействию стрессоров неспецифичны и являются общими для любых стрессовых воздействий, что позволяет говорить об общем адаптационном синдроме (или стресс-реакции).

В современной литературе механизмы, лежащие в основе стресс-реакции, называют стресс-реализующими системами.

Первый этап в стресс-реакции — активация симпатического и парасимпатического звеньев автономной нервной системы.

Физиологические изменения в организме, наблюдаемые на первом этапе стресс-реакции:

1)учащение сердцебиения;

2)усиление сердечных сокращений;

3)расширение сосудов сердца;

4)сужение брюшных артерий;

5)расширение зрачков;

6)расширение бронхиальных трубок;

7)увеличение силы скелетных мышц;

8)выработка глюкозы в печени;

9)увеличение продуктивности мыслительной деятельности;

10)расширение артерий, проходящих в толще скелетных мышц;

11)ускорение обмена веществ.

Стресслимитирующие системы.

В процессе эволюции в организме человека появились механизмы, которые препятствуют развитию стресс-реакции или снижают ее побочные отрицательные воздействия на органы-мишени. Такие механизмы получили название стресс-лимитирующие системы, или системы естественной профилактики стресса.                                                                 

ГАМК-эргическая система. Гамма-аминомасляная кислота (ГАМК) продуцируется многими нейронами ЦНС, в том числе и тормозными.

Под влиянием ферментов ГАМК превращается в мозге в ГОМК (гамма-оксимасляная кислота), которая способна тормозить деятельность многих структур мозга, в том числе и гипоталамуса.

В результате не происходит запуска стресс-реакции.                                                                                         

Эндогенные опиаты (энкефалины, эндорфины, динорфины). Образуются из бета-липотропина в гипофизе под влиянием стресса. Эти вещества вызывают эйфорию, снижают болевую чувствительность, повышают работоспособность, увеличивают возможность выполнения длительной мышечной работы, снижают чувство тревоги. В целом эти вещества снижают психогенные реакции человека на раздражители, уменьшая интенсивность эмоциональной реакции, запускающей стресс-реакцию.

Простогландины (преимущественно группы Е). Их продукция возрастает при стрессе, в результате чего снижается чувствительность ряда тканей к действию катехоламинов. Особенно это выражается в отношении чувствительности нейронов центральной нервной системы к норадреналину. Таким образом, простогландиныснижают выраженность стресс-реакции.                       

Антиоксидантная система. Как отмечалось ранее, при действии глюкокортикоидов активируется перекисное окисление липидов, следствием чего является образование свободных радикалов, которые приводят к активации многих биохимических реакций в клетках, что нарушает их жизнедеятельность (плата за адаптацию). Однако в организме существуют эндогенные «тушители» этих свободнорадикальных процессов, которые получили название антиоксиданты. К ним относят витамин Е, серосодержащие аминокислоты (цистин, цистеин), фермент супероксиддисмутаза.                                     

Трофотропные механизмы. Активация парасимпатической нервной системы во время стресс-реакции представляет собой важнейший механизм зашиты от побочных эффектов глюкокортикоидов и других участников стресс-реакции.

Билет №5

1)       Электрические явления в возбудимых образованиях. Мембранный потенциал, его происхождение. Локальный ответ.

Возбуждение – это активный процесс, представляющий собой ответную реакцию ткани на раздражение и характеризующийся повышением функций ткани.

В развитии возбуждения выделяют 4 этапа:

1.       предшествующее возбуждению состояние покоя (статическая поляризация

2.       деполяризацию;

3.       реполяризацию

4.       гиперполяризацию.

Статическая поляризация – наличие постоянной разности потенциалов между наружной и внутренней поверхностями клеточной мембраны. В состоянии покоя наружная поверхность клетки всегда электроположительна по отношению к внутренней, т.е. поляризована. Эта разность потенциалов, равная ~ 60 мВ, называется потенциалом покоя, или мембранным потенциалом (МП).

В образовании потенциала принимают участие 4 вида ионов:

•        катионы натрия (положительный заряд),

•        катионы калия (положительный заряд),

•        анионы хлора (отрицательный заряд),

•        анионы органических соединений (отрицательный заряд).

Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости – ионов калия и органических соединений. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений. В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд.

Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Деполяризация – сдвиг МП в сторону его уменьшения. Под действием раздражения открываются «быстрые» натриевые каналы, вследствие чего ионы Na лавинообразно поступают в клетку. Переход положительно заряженных ионов в клетку вызывает уменьшение положительного заряда на ее наружной поверхности и увеличение его в цитоплазме. В результате этого сокращается трансмембранная разность потенциалов, значение МП падает до 0, а затем по мере дальнейшего поступления Na в клетку происходят перезарядка мембраны и инверсия ее заряда (поверхность становится электроотрицательной по отношению к цитоплазме) – возникает потенциал действия (ПД). Электрографическим проявлением деполяризации является спайк, или пиковый потенциал. Во время деполяризации, когда переносимый ионами Na положительный заряд достигает некоторого порогового значения, в сенсоре напряжения ионных каналов возникает ток смещения, который «захлопывает» ворота и «запирает» (инактивирует) канал, прекращая тем самым дальнейшее поступление Na в цитоплазму. Канал «закрыт» (инактивирован) вплоть до восстановления исходного уровня МП.

Реполяризация – восстановление исходного уровня МП. При этом ионы натрия перестают проникать в клетку, проницаемость мембраны для калия увеличивается, и он достаточно быстро выходит из нее. В результате заряд клеточной мембраны приближается к исходному. Электрографическим проявлением реполяризации является отрицательный следовой потенциал.

Гиперполяризация – увеличение уровня МП. Вслед за восстановлением исходного значения МП (реполяризация) происходит его кратковременное увеличение по сравнению с уровнем покоя, обусловленное повышением проницаемости калиевых каналов и каналов для Cl . В связи с этим поверхность мембраны приобретает избыточный по сравнению с нормой положительный заряд, а уровень МП становится несколько выше исходного. Электрографическим проявлением гиперполяризации является положительный следовой потенциал. На этом заканчивается одиночный цикл возбуждения.

Потенциал действия - это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия с помощью микроэлектродной техники наблюдается типичный пикообразный потенциал. В нем выделяют следующие фазы или компоненты:

•        Локальный ответ - начальный этап деполяризации.

•        Фазу деполяризации - быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут).

•        Фазу реполяризации - восстановление исходного уровня мембранного потенциала; в ней выделяют фазу быстрой реполяризации и фазу медленной реполяризации, в свою очередь, фаза медленной реполяризации представлена следовыми процессами (потенциалами):следовая негативность (следовая деполяризация) и следовая позитивность (следовая гиперполяризация). Амплитудно-временные характеристики потенциала действия нерва, скелетной мышцы таковы: амплитуда потенциала действия 140-150 мВ; длительность пика потенциала действия (фаза деполяризации + фаза реполяризации) составляет 1-2 мс, длительность следовых потенциалов - 10-50 мс. Форма потенциала действия (при внутриклеточном отведении) зависит от вида возбудимой ткани: у аксона нейрона, скелетной мышцы - пикообразные потенциалы, у гладких мышц в одних случаях пикообразные, в других - платообразные (например, потенциал действия гладких мышц матки беременной женщины - платообразный, а длительность его составляет почти 1 минуту). У сердечной мышцы потенциал действия имеет платообразную форму.

 

Природа потенциала действия:

При исследовании ПД аксонов и сомы нервной клетки, ПД скелетной мышцы было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциала (деполяризация). Чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше входит ионов натрия в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны - на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной (явление реверсии, или овершута).

Однако бесконечно этот процесс идти не может: в результате закрытия инактивационных ворот натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов, которые в условиях покоя были закрыты, открываются и «+» заряды уходят за пределы клетки. Вначале этот процесс идет очень быстро, потом - медленно, поэтому фаза реполяризации вначале протекает быстро (нисходящая часть пика ПД), а потом медленно (следовая негативность). Этот же процесс лежит в основе фазы следовой гиперполяризации. На фоне следовых потенциалов происходит активация K-Na-ого насоса. Если он работает в электронейтральном режиме (2 иона Na выносятся из клетки в обмен на 2 вносимых в клетку иона K), то на форме ПД этот процесс не отражается. Если же насос работает в электрогенном режиме, когда 3 иона Na выносятся из клетки в обмен на 2 вносимых в клетку иона K, то в результате на каждый такт работы насоса в клетку вносится на 1 катион меньше, чем выносится, поэтому в клетке постепенно возрастает избыток анионов, т. с. в таком режиме насос способствует появлению дополнительной разности потенциалов. Это явление может лежать в основе фазы следовой гиперполяризации.

В сердечной мышце природа ПД иная: процесс деполяризации обусловлен ионами натрия и кальция - эти ионы входят внутрь клетки в начале фазы деполяризации.

В гладких мышцах сосудов, желудка, кишечника, матки и других образований генерация ПД связана с тем, что в момент возбуждения в клетку входят главным образом не ионы натрия, а ионы кальция.

Ионный механизм возбуждения:

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации натриевых каналов. При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются извне-во внутриклеточное пространство. Вхождению ионов Na+ в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов К+.

Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации). Мембрана характеризуется повышенной проницаемостью для ионов Na+ лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na+ вновь понижается, а для К+ возрастает. В результате поток Na+ внутрь клетки резко ослабляется, а ток К+ из клетки усиливается. В течение потенциала действия в клетку поступает значительное количество Na+, а ионы К+ покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na+, К+ - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na+ и увеличении внешней концентрации ионов К+.

Благодаря работе ионного насоса и изменению проницаемости мембраны для Na+ и К+ первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

 

Представление о хроно-, батмо-, дромо-, ино- и тонотропных эффектах как проявлениях регуляторных влияний на работу сердца. Виды регуляции сердечной деятельности. Авторегуляция: миогенный (гетеро- и гомеометрический) механизмы.

Миогенные механизмы регуляции деятельности сердца.

Изучение зависимости силы сокращений сердца от растяжения его камер показало, что сила каждого сердечного сокращения зависит от величины венозного притока и определяется конечной диастолической длиной волокон миокарда.

В результате было сформулировано правило, вошедшее в физиологию как закон Старлинга: «Сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением».

Гетерометрический механизм регуляции характеризуется высокой чувствительностью. Его можно наблюдать при введении в магистральные вены всего 1-2% общей массы циркулирующей крови, тогда как рефлекторные механизмы изменений деятельности сердца реализуются при внутривенных введениях не менее 5-10% крови.

Инотропные влияния на сердце, обусловленные эффектом Франка-Старлинга, могут проявляться при различных физиологических состояниях. Они играют ведущую роль в увеличении сердечной деятельности при усиленной мышечной работе, когда сокращающиеся скелетные мышцы вызывают периодическое сжатие вен конечностей, что приводит к увеличению венозного притока за счет мобилизации резерва депонированной в них крови. Отрицательные инотропные влияния по указанному механизму играют существенную роль в изменениях кровообращения при переходе в вертикальное положение (ортостатическая проба). Эти механизмы имеют большое значение для согласования изменений сердечного выброса и притока крови по венам малого круга, что предотврашает опасность развития отека легких.

Гетерометрическая регуляция сердца может обеспечить компенсацию циркуляторной недостаточности при его пороках.

Гомеометрический механизм регуляции. Термином «гомеометрическая регуляция» обозначают миогенные механизмы, для реализации которых не имеет значения степень конечно-диастолического растяжения волокон миокарда. Среди них наиболее важным является зависимость силы сокращения сердца от давления в аорте (эффект Анрепа). Этот эффект состоит в том, что увеличение давления в аорте первоначально вызывает снижение систолического объема сердца и увеличение остаточного конечного диастолического объема крови, вслед за чем происходит увеличение силы сокращений сердца и сердечный выброс стабилизируется на новом уровне силы сокращений.

Таким образом, миогенные механизмы регуляции деятельности сердца могут обеспечивать значительные изменения силы его сокращений. Особенно существенное практическое значение эти факты приобрели в связи с проблемой трансплантации и долгосрочного протезирования сердца. Показано, что у людей с пересаженным и лишенным нормальной иннервации сердцем в условиях мышечной работы имеет место увеличение ударного объема более чем на 40%.

Дата: 2019-03-05, просмотров: 215.