КЛАССИФИКАЦИЯ ЭКСПЕРТНЫХ СИСТЕМ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Класс "экспертные системы" сегодня объединяет несколько тысяч различных программных комплексов, которые можно классифицировать по различным критериям. Полезными могут оказаться следующие классификации :

Классификация по решаемой задаче

- Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается определение смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.

- Диагностика. Под диагностикой понимается обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является необходимость понимания функциональной структуры ("анатомии") диагностирующей системы.

- Мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - "пропуск" тревожной ситуации и инверсная задача "ложного" срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учета временного контекста.

- Проектирование. Проектирование состоит в подготовке спецификаций на создание "объектов" с заранее определенными свойствами. Под спецификацией понимается весь набор необходимых документов - чертеж, пояснительная записка и т.д. Основные проблемы здесь — получение четкого структурного описания знаний об объекте и проблема "следа". Для организации эффективного проектирования и, в еще большей степени, перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.

- Прогнозирование. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров "подгоняются" под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.

- Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.

- Обучение. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом "ученике" и его характерных ошибках, затем в работе способны Диагностировать слабости в знаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в следующем: если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально строится из решений компонентов или подпроблем. Задача анализа - это интерпретация данных, диагностика; к задачам синтеза относятся проектирование, планирование. Комбинированные задачи: обучение, мониторинг, прогнозирование.

Классификация по связи с реальным временем

- Статические ЭС разрабатываются в предметных областях, в которых база знаний и интерпретируемые данные не меняются во времени. Они стабильны.

- Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.

- Динамические ЭС работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацией поступаемых данных.

Классификация по типу ЭВМ

На сегодняшний день существуют:

- ЭС для уникальных стратегически важных задач на суперЭВМ (Эльбрус, CRAY, CONVEX и др.);

- ЭС на ЭВМ средней производительности (типа ЕС ЭВМ, mainframe);

- ЭС на символьных процессорах и рабочих станциях (SUN, APOLLO);

- ЭС на мини- и супермини-ЭВМ (VAX, micro-VAX и др.);

- ЭС на персональных компьютерах (IBM PC, MAC II и подобные).

Классификация по степени интеграции с другими программами

- Автономные ЭС работают непосредственно в режиме консультаций с пользователем для специфически "экспертных" задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчеты, моделирование и т.д.).

- Гибридные ЭС представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний.

Несмотря на внешнюю привлекательность гибридного подхода, следует отметить, что разработка таких систем являет собой задачу, на порядок более сложную, чем разработка автономной ЭС. Стыковка не просто разных пакетов, а разных методологий (что происходит в гибридных системах) порождает целый комплекс теоретических и практических трудностей.


Вопрос 41 Технологию разработки экспертных систем (далее ЭС) можно представить схемой, включающей

следующие этапы (Рисунок 1-2. Этапы разработки ЭС.):

1. Предварительный этап – этот этап включает деятельность предшествующую решению о разработке новой ЭС. В рамках этого этапа осуществляются конкретизация задачи, подбор экспертов в данной предметной области для совместной работы, выбор подходящих инструментальных средств. Главной особенностью этого этапа является то, что может быть принято решение о нецелесообразности разработки ЭС для выбранной задачи.

2. Этап прототипирования – в ходе этого этапа создается прототип ЭС, предназначенный проверки правильности выбранных средств и методов разработки новой ЭС. К прототипу системы не предъявляются высокие требования. Основная его задача состоит в иллюстрации возможностей будущей системы для специалистов, непосредственно участвующих в разработке, а также для потенциальных пользователей. На этом этапе может быть осуществлена корректировка проекта, уточнены время, стоимость и необходимые ресурсы для завершения работы.

3. Этап доработки – это по сути основной, наиболее рутинный и продолжительный этап работы над ЭС. Все компоненты многократно тестируются и доводятся до соответствия требованиям проекта. Наибольшую сложность вызывает доработка и доказательство адекватности и эффективности БЗ, так как количество записей в ней может быть на порядок больше, чем в прототипе. На практике граница между этапами может быть размыта, а сам процесс проектирования является достаточно неформальным, так как связан с исследованием и попыткой копирования деятельности человека. Большое количество применяемых эвристик, интуитивный подход к решению задач экспертами делают процесс создания ЭС творческим. Впрочем, формализация технологии ЭС, разработка в ее рамках математических методов и алгоритмов формирования и обработки знаний – это и есть суть современной теории ЭС. Еще одной особенностью разработки ЭС является поэтапное ее внедрение. Первые версии новой ЭС начинают эксплуатироваться в ограниченном объеме уже на этапе прототипирования.

Прототип, как первое приближение к новой ЭС, является индикатором успешности или неудачи предварительного этапа. В процессе постановки задачи наиболее критической частью разработки в целом является правильный выбор проблемы. Если выбрать неподходящую проблему, можно очень быстро увязнуть в «болоте» проектирования задач, которые никто не знает, как решать. Экспертная система ни в коем случае не устраняет потребности в базах данных, статистическом программном обеспечении, электронных таблицах и системах текстовой обработки. Но если результативность задачи зависит от субъективного знания, вытекающего частично из соображений здравого смысла или интуиции, тогда эффект от внедрения в данной области экспертной системы может быть достаточно высоким.

Можно условно выделить следующие основные стадии разработки прототипа:

1. Идентификация проблемы

2. Извлечение знаний

 3. Структурирование или концептуализация знаний

4. Формализация знаний

5. Реализация

6. Тестирование

В плавном процессе совершенствования прототипа системы можно также выделить некие стадии, граница между которыми достаточно размыта, но в тоже время обладающие определенными характеристиками:

- Демонстрационный прототип ЭС – система решает часть задач, демонстрируя жизнеспособность подхода (несколько десятков записей БЗ).

- Исследовательский прототип ЭС – система решает большинство задач, но не устойчива в работе и не полностью проверена (несколько сотен записей БЗ).

- Действующий прототип ЭС – система надежно решает все задачи на реальных примерах, но для сложной задачи, возможно, потребуется много времени и памяти.

- Рабочая система – система обеспечивает высокое качество решений при минимизации требуемого времени и памяти: переписывается с использованием более эффективных инструментальных средств.

- Коммерческая система – рабочая система, пригодная к продаже, т.е. хорошо документирована и снабжена необходимым сервисом по распространению.

Оценку можно проводить, исходя из критериев следующих категорий:

- критерии пользователей (понятность и «прозрачность» работы системы, удобство интерфейсов и др.);

- критерии приглашенных экспертов (оценка советов-решений, предлагаемых системой, сравнение ее с собственными решениями, оценка подсистемы объяснений и др.);

- собственные критерии коллектива разработчиков (эффективность реализации, производительность, время отклика, дизайн, широта охвата предметной области, непротиворечивость БЗ, количество тупиковых ситуаций, когда система не может принять решение, анализ чувствительности программы к незначительным изменениям в представлении знаний, весовых коэффициентах, применяемых в механизмах логического вывода, данных и т.п.).




Дата: 2019-03-05, просмотров: 210.