Зарождение и развитие классичечкой науки
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

С первых двух глобальных революций в развитии научных знаний, происходивших в XV-XVH вв., создавших принци­пиально новое по сравнению с античностью и средневековь­ем понимание мира, и началась классическая наука, ознаменовавшая генезис науки как таковой, как целостного триединства, т. е. особой системы знания, своеобразного ду­ховного феномена и социального института.

Подготовительный этап первой научной революции при­ходится на эпоху Возрождения (1448-1540). В этот период происходит постепенная смена мировоззренческой ориента­ции: для человека значимым становится посюсторонний мир, а автономным, универсальным и самодостаточным - инди­вид. В протестантизме происходит разделение знания и веры, ограничение сферы применения человеческого разума миром «земных вещей», под которым понимается практически ори­ентированное познание природы.

Поэтому первоначальное «целое» науки в отличие от фило­софии - это математическое естествознание, и прежде всего механика. «Предоставив дело спасения души «одной лишь вере», протестантизм тем самым вытолкнул разум на поприще мировой практической деятельности - ремесла, хозяйства, политики. Применение разума в практической сфере тем более поощрялось, что сама эта сфера, с точки зрения реформаторов, приобретает особо важное значение: труд выступает теперь как своего рода мирская аскеза, поскольку монашескую аскезу про­тестантизм не принимает. Отсюда уважение к любому труду - как крестьянскому, так и ремесленному, как деятельности зем­лекопа, так и деятельности предпринимателя. Этим объясняет­ся характерное для протестантов признание особой ценности технических и научных изобретений, всевозможных усовер­шенствований, которые способствуют облегчению труда и сти­мулированию материального производства»'. В этих условиях и возникает экспериментально-математическое естествозна­ние, отделившееся от собственно философии как особой сфе­ры знания («великая дифференциация»).

Среди тех, кто непосредственно подготавливал рождение" науки, был Николай Кузанский (1401-1464), идеи которого оказали влияние на Джордано Бруно, Леонардо да Винчи, Николя Коперника, Галилео Галилея, Иоганна Кеплера.

В своих философских воззрениях на мир Николай Кузанский вводит методологический принцип совпадения противоположностей - единого и бесконечного, максимума и мини­мума, из которого следует тезис об относительности любой точки отсчета, тех предпосылок, которые лежат в фундамен­те арифметики, геометрии, астрономии и других знаний. От сюда он делает заключение о предположительном характере всякого человеческого знания, а не только того, которое мы получаем, опираясь на опыт, как считали в античности. По­этому он уравнивает в правах и науку, основанную на опыте, и науку, основанную на доказательствах.

Большое внимание Николай Кузанский придает измери­тельным процедурам, поэтому интерес представляет его по­пытка дать «опытное» обоснование геометрии с помощью взвешивания, которое воспринимается им как универсальный прием. Механические средства измерения уравниваются в правах с математическим доказательством, что уничтожает ранее непреодолимую грань между механикой, понимаемой как искусство, и математикой как наукой. Это те предпосыл­ки, без которых не могло бы возникнуть исчисление беско­нечно малых и механика как математическая наука.

Применяя принцип совпадения противоположностей к астрономии, Кузанский высказал предположение, что Земля не является центром Вселенной, а такое же небесное тело, как и Солнце и Луна, что подготавливало переворот в астроно­мии, который в дальнейшем совершил Коперник. А приме­ненный к проблеме движения принцип совпадения противо­положностей дал Н. Кузанскому возможность высказать идею о тождестве движения и покоя, что в корне противоречило ан­тичному и средневековому пониманию, утверждавшему, что покой и движение - качественно различные и принципиаль­но несовместимые состояния.

Тот переворот, который совершил в астрономии польский астроном Николай Коперник (1473-1543), имел огромное значение для развития науки и философии и их отделения друг от друга. В год своей смерти он публикует труд «Об обра­щении небесных тел», в котором в качестве постулата утвер­ждает, что все небесные тела являются сферами, вращающи­мися по круговым орбитам вокруг Солнца, восседающего на царском престоле и управляющего всеми светилами.

В этой гелиоцентрической концепции сформулировано новое миропонимание, согласно которому Земля - одна из планет, движущаяся по круговой орбите вокруг Солнца. Со­вершая обращение вокруг Солнца, она вращается и вокруг своей оси. Кажущиеся движения планет принадлежат не им, а Земле и через ее движение можно объяснить их неравномер­ности. Идея движения как естественного свойства небесных и земных тел - ценное достижение концепции Коперника. Кроме того, им высказана мысль о том, что движение тел под­чинено некоторым общим закономерностям. Но он был убеж­ден в конечности мироздания и считал, что Вселенная где-то заканчивается неподвижной твердой сферой, на которой за­креплены неподвижные звезды.

Убеждение Коперника в ограниченности Вселенной твер­дой сферой было опровергнуто датским астрономом Тихо Браге (1546-1601), который сумел рассчитать орбиту кометы, проходившей вблизи планеты Венера. Согласно его расчетам, получалось, что эта комета должна была натолкнуться на твердую поверхность сферы, если бы та существовала, чего не произошло.

Джордано Бруно (1548-1600), который был в большей степени натурфилософом, чем математиком, физиком или астрономом, отстаивал идею бесконечности Вселенной, кото­рая для него была единой и неподвижной. Он считал, что Все­ленная не движется в пространстве, так как ничего нет вне ее, куда она могла бы переместиться, потому что она является всем. Она не рождается и не уничтожается, не уменьшается и не увеличивается. «Вселенной, таким образом, приписаны ат­рибуты божества: пантеизм потому и рассматривался церковью как опасное учение, что он вел к устранению трансценден­тального Бога, к его имманентизации. К этим выводам не пришел Кузанец, хотя он и проложил тот путь, по которому до конца пошел Бруно».

А так как Вселенная бесконечна, то могут быть отменены и положения аристотелевской космогонии, в частности: вне мира нет ничего, Космос конечен. Отвергает Бруно и понятие абсолютного места (абсолютного верха и абсолютного низа), тем самым вводя идею относительности движения, столь не­обходимую для создания физики. Он делает предположение, что существует множество миров, подобных нашему. А это уже характеристики нового мышления.

Период с 1540 по 1650 г. характеризуется торжеством опыт­ного (экспериментального) подхода к изучаемым явлениям: открытие кровообращения Гарвеем (1628), установление маг­нитных свойств Земли Гильбертом (1600), прогресс техники, открытие и применение телескопа и микроскопа, утвержде­ние идеи гелиоцентризма и принципа идеализации (особен­но важного для науки) Г. Галилеем.

Галилео Галилея (1564-1642) - итальянского физика и ас­тронома - по праву относят к тем, кто стоял у истоков фор­мирования науки. Опираясь на принцип совпадения противо­положностей, сформулированный Николаем Кузанским, он применил его к решению проблемы бесконечного и недели­мого. Решая проблему пустоты, известную еще с античности, Галилей допустил существование «мельчайших пустот» в те­лах, которые оказываются источником силы сцепления в них. С Галилея начинается рассмотрение проблемы движения, лежащей в основе классической науки. До него господствова­ло представление о движении, сформированное еще Аристо­телем, согласно которому оно происходит, если существует сила, приводящая тело в движение; нет силы, действующей на тело, нет и движения тела. Кроме того, чтобы последнее продолжалось, необходимо сопротивление, другими словами, в пустоте движение невозможно, так как в ней нет ничего, что оказывало бы сопротивление.

Галилей предположил, что, если допустить существование абсолютно горизонтальной поверхности, убрать трение, то движение тела будет продолжаться. В этом предположении заключен закон инерции, сформулированный позже И. Нью­тоном. Галилей был одним из первых мыслителей, кто пока­зал, что непосредственное данные опыта не являются исход­ным материалом познания, что они всегда нуждаются в опре­деленных теоретических предпосылках, другими словами, опыт «теоретически нагружен».

Галилей выделил два основных метода исследования природы:

а. Аналитический («метод резолюций») - прогнозирова­ние чувственного опыта с использованием средств мате­матики, абстрагирования и идеализации, благодаря чему выделяются элементы реальности, недоступные непосредственному восприятию (например, мгновенная скорость).

б. Синтетически-дедуктивный («метод композиции») - математическая обработка данных опыта выявляет ко­личественные соотношения, на основе которых выраба­тываются теоретические схемы, применяемые для ин­терпретации и объяснения явлений.

Идеи закона инерции и примененный Галилеем метод за­ложили основы классической физики. К его научным дости­жениям относятся: установление того, что скорость свободно­го падения тела не зависит от его массы, а пройденный путь пропорционален квадрату времени падения; создание теории параболического движения, теории прочности и сопротивле­ния материалов, создание телескопа, открытие закона колеба­ния маятника, экспериментальное установление того, что воз­дух обладает весом. В области астрономических исследований Галилей обосновал гелиоцентрическую систему Коперника в работе «Диалог о двух системах мира - Птолемеевской и Коперниковой», дополнив ее своими открытиями, что Солнце вращается вокруг своей оси, что на его поверхности есть пят­на, обнаружил у Юпитера 4 спутника (сейчас их известно 13), что Млечный путь состоит из звезд.

Достижения в области астрономии были высоко оценены крупнейшим немецким математиком и астрономом Иоганном Кеплером (1571-1630). Занимаясь поисками законов небесной механики на основе обобщения данных астроно­мических наблюдений, он установил три закона движения планет относительно Солнца. В первом законе, отказавшись от представления Коперника о круговом движении планет вокруг Солнца, он утверждал, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Из второго закона Кеплера следовало, что радиус-вектор, проведенный от Солнца к планете в равные промежутки вре­мени, описывает равные площади. Это означало, что ско­рость движения планеты по орбите не постоянна, она тем больше, чем ближе планета к Солнцу. И согласно третьему закону, квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него. Кеплер разработал теорию солнечных и лунных затмений, предло­жив способы их предсказания, уточнил величину расстояния между Землей и Солнцем.

Естествоиспытатель сделал попытку не философского, а механического объяснения небесных движений, причиной которых считал взаимное притяжение тел, рассматривая их по аналогии с притяжением магнита, но природу сил тяготения для себя Кеплер еще не прояснил. Он не принимал закона инерции в той интерпретации, которую мы увидим у Декар­та и Ньютона. Для него инерция тела состоит в его стремле­нии к покою, в сопротивлении движению - понимание, свойственное античности и средневековью. Вот поэтому Кеп­лер, также как и Аристотель, считал, что для приведения тела к движению необходим двигатель.

Непреходящая заслуга Френсиса Бэкона (1561-1626) - английского философа-материалиста и одного из основопо­ложников науки - состояла в том, что он одним из первых за­метил начавшийся в XV-XV вв. активный процесс «вели­кой дифференциации». Иначе говоря, он уловил, что единое ранее знание (назвать ли его так, или философией, но это было единое духовное формообразование), - по современной терминологии «преднаука» - в силу экономических, поли­тических и иных причин начинает объективно расчленяться, раздваиваться на два крупных (хотя и тесно связанных) «ство­ла» - собственно философию и науку, т. е. на два самостоя­тельных и специфических образования. Поэтому термины «философия» и «наука» у него далеко не синонимы.

Нисколько не умаляя роли философии, Ф. Бэкон пред­принимает «Великое восстановление наук» (в книге, остав­шейся не законченной) и фиксирует возникновение науки как «триединого целого» (система специализированного знания и его постоянного воспроизводства и обновления, социальный институт и форма духовного производства.

Своим творчеством Рене Декарт (1596-1650), французский философ и математик, призван был расчистить почву для по­стройки новой рациональной культуры и науки. Для этого ну­жен новый рационалистический Метод, прочным и незыбле­мым основанием которого должен быть человеческий разум.

В протяженной субстанции, или природе, как считает Де­карт, мы можем мыслить ясно и отчетливо только ее величи­ну (что тождественно с протяжением), фигуру, расположение частей, движение. Последнее понимается только как переме­щение, ни количественные, ни качественные изменения к нему не относятся.

Наукой же, изучающей величину, фигуры, является гео­метрия, которая становится универсальным инструментом познания. И перед Декартом стоит задача - преобразовать геометрию так, чтобы с ее помощью можно было бы изучать и движение. Тогда она станет универсальной наукой, тожде­ственной Методу. И создав систему координат, введя пред­ставление об одновременном изменении двух величин, из ко­торых одна есть функция (кстати, термина «функция» еще в его терминологии нет) другой, Декарт внес в математику принцип движения. Теперь математика становится формаль­но-рациональным методом, с помощью которого можно «счи­тать» числа, звезды, звуки и т. д., любую реальность, устанав­ливая в ней меру и порядок с помощью нашего разума.

Французский мыслитель отождествляет пространство (протяженность) с материей (природой), понимая последнюю как непрерывную, делимую до бесконечности. Поэтому и кос­мос у него беспределен. Но идею Дж. Бруно о множественно­сти миров Декарт не разделяет.

Философ понимает движение как относительное, движе­ние и покой равнозначны: тело может являться движущимся относительно одних тел, в то время как относительно других будет оставаться покоящимся. На этом основании он форму­лирует принцип инерции: тело, раз начав двигаться, продол­жает это движение и никогда само собой не останавливается.

Гарантом и для закона инерции (первого закона природы) и для второго закона, утверждающего, что всякое тело стре­мится продолжать свое движение по прямой, согласно Декар­ту, выступает Бог-Творец. Третий закон определяет принцип движения сталкивающихся тел. Первый и второй законы при­знавались в физике Нового времени, третий же был подверг­нут резкой критике.

Согласно Декарту, задача науки - вывести объяснение всех явлений природы из полученных начал, в которых нельзя усомниться, но устанавливаются эти начала философией. Поэтому его часто упрекают в априорном характере научных положений.

Декарт отмечает, что представление о мире, которое дает наука, отличается от реального природного мира, поэтому научные знания гипотетичны. Признание вероятностного их характера некоторые исследователи видят в нежелании Декар­та навлечь на себя подозрение в подрыве религиозной веры. Но была и теоретическая причина, как считает П. П. Гайденко: «И причиной этой, как ни парадоксально, является божественное всемогущество. Какая же тут, казалось бы, может быть связь? А между тем простая: будучи всемогущим, Бог мог воспользоваться бесконечным множеством вариантов для со­здания мира таким, каким мы его теперь видим. А потому тот вариант, который предложен Декартом, является только веро­ятностным, - но в то же время он равноправен со всеми ос­тальными вариантами, если только он пригоден для объясне­ния встречающихся в опыте явлений».

Нигде в предшествующем знании не существовало понима­ния природы как сложной системы механизмов, всемогущий Творец никогда не выступал в образе Бога-Механика, поэтому Декарту важно показать, что Бог владеет бесконечным арсена­лом средств для построения машины мира, и хотя человеку не дано постичь, какие именно из средств использовал Бог, строя мир, человек, создавая науку, конструирует мир так, чтобы между ним и реальным миром имелось сходство. Вот поэтому предла­гаемый в науке вариант объяснения мира носит гипотетический характер, но отнюдь не теряет своей объяснительной силы.

Сильное впечатление на современников произвела теория вихрей (космогоническая гипотеза) Декарта: мировое про­странство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Хотя космогони­ческая гипотеза Декарта была отвергнута, но остались бес­смертными его достижения в области математики: введение системы координат, алгебраических обозначений, понятия переменной, создание аналитической геометрии. Важна была также идея развития, содержащаяся в теории вихрей, и идея деления «корпускул» до бесконечности, что впоследствии было подтверждено атомной физикой.

Научную программу, которую создал Исаак Ньютон (1643- 1727), английский физик, он назвал «экспериментальной фи­лософией». В соответствии с ней исследование природы дол­жно опираться на опыт, который затем обобщается при помо­щи «метода принципов», смысл которого заключается в следующем: проведя наблюдения, эксперименты, с помощью индукции вычленить в чистом виде связи явлений внешнего мира, выявить фундаментальные закономерности, принципы, которые управляют изучаемыми процессами, осуществить их математическую обработку и на основе этого построить цело­стную теоретическую систему путем дедуктивного разверты­вания фундаментальных принципов.

Ньютон создал основы классической механики как цело­стной системы знаний о механическом движении тел, сфор­мулировал три ее основных закона, дал математическую фор­мулировку закона всемирного тяготения, обосновал теорию движению небесных тел, определил понятие силы, создал дифференциальное и интегральное исчисление как язык опи­сания физической реальности, выдвинул предположение о со­четании корпускулярных и волновых представлений о приро­де света. Механика Ньютона стала классическим образцом де­дуктивной научной теории.

Также как и Ньютон, немецкий ученый Готфрид Вильгельм Лейбниц (1646-1716) был убежден, что все в мире существу­ющее должно быть объяснено с помощью исключительно ме­ханических начал. Природа - это совершенный механизм, и все - от неорганического до живых организмов - создано ге­ниальным механиком Богом. И познаваться этот механизм может с помощью механических причин и законов.

Отметим основные научные достижения Лейбница (вопре­ки его механистическому материализму вначале, а затем объективному идеализму - особенно в «Монадологии»):

1. Открыл (одновременно с Ньютоном) дифференциаль­ное и интегральное исчисления, что положило начало новой эре в математике.

2. Стал родоначальником математической логики и одним из создателей счетно-решающих устройств. В связи с этим основатель кибернетики Н. Винер назвал его сво­им предшественником и вдохновителем.

3. В вопросах физики и механики подчеркивал важную роль наблюдений и экспериментов, был одним из пер­вых ученых, предвосхитивших закон сохранения и пре­вращения энергии.

4. В трактате «Протагея» одним из первых пытался научно истолковать вопросы происхождения и эволюции Земли.

5. Изобрел специальные насосы для откачки подземных вод и создал другие оригинальные технические новшества.

6. Обратил внимание на теорию игр.

7. Указал на взаимосвязи, развитие и «тонкие опосредования» между растительным, животным и человеческим «царствами».

8. Ратовал за широкое применение научных знаний в практике.

В Новое время сложилась механическая картина мира, утверждающая: вся Вселенная - совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных силами тяготения, подчиненных законам классической механики; природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.

Механическая картина мира сыграла во многом положи­тельную роль, дав естественнонаучное понимание многих яв­лений природы. Таких представлений придерживались практи­чески все выдающиеся мыслители XV в. - Галилей, Ньютон, Лейбниц, Декарт. Для их творчества характерно построение целостной картины мироздания. Учеными не просто стави­лись отдельные опыты, они создавали натурфилософские си­стемы, в которых соотносили полученные опытным путем знания с существующей картиной мира, внося в последнюю необходимые изменения. Без обращения к фундаментальным научным основаниям считалось невозможным дать полное объяснение частным физическим явлениям. Именно с этих позиций начинало формироваться теоретическое естествозна­ние, и в первую очередь - физика.

В основе механистической картины мира лежит метафизи­ческий подход к изучаемым явлениям природы как не связан­ным между собой, неизменным и не развивающимся. Ярким примером использования его является классификация живот­ного мира, изложенная известным шведским ученым-натура­листом Карлом Линнеем (1707-1778) в работе «Система при­роды». Достоинством ее является бинарная система обозначе­ния растений и животных (где первое слово обозначает род, а второе - вид), дошедшая до настоящего времени. Располо­жив растения и животных в порядке усложнения их строения, ученый тем не менее не усмотрел изменчивости видов, считая их неизменными, созданными Богом.

Успешное развитие классической механики привело к тому, что среди ученых возникло стремление объяснить на основе ее законов все явления и процессы действительности. В конце XVH в. - первой половине ХГХ в. намечается тен­денция использования научных знаний в производстве, при­чиной чему было развитие машинной индустрии, пришедшее на смену мануфактурному производству, что вызвало развитие технических наук. «Технические науки не являются простым продолжением естествознания, прикладными исследования­ми, реализующими концептуальные разработки фундамен­тальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и приклад­ных знаний».

Классическим примером первых научно-технических знаний служит сконструированные X. Гюйгенсом механи­ческие часы, воплотившие теорию колебаний маятника в созданное техническое решение. Возникшие на стыке естествознания и производства технические науки проявляют свои специфические черты, отличающие их от естественно­научного знания.

Начиная с создания немецким мыслителем Иммануилом Кантом (1724-1804) работы «Всеобщая естественная история и теория неба» в естествознание проникают диалектические идеи. Согласно гипотезе, изложенной в данной работе, Сол­нце, планеты и их спутники возникли из некоторой первона­чальной бесформенной туманной массы, которая заполняла мировое пространство. Под действием притяжения из частиц об­разовывались отдельные сгущения, которые становились цент­рами притяжения, из одного такого центра образовалось Солн­це, вокруг которого, двигаясь по кругу, расположились частицы в виде круговых туманностей. В них стали образовываться заро­дыши планет, которые начали вращаться вокруг своей оси. Вследствие трения частиц, из которых они образовались, Солнце и планеты сначала разогрелись, а потом начали остывать.

Почти через 40 лет после Канта французский математик и астроном П. Лаплас (1749-1847) выдвинул идеи, которые до­полнили и развили кантовскую гипотезу, и в обобщенном виде эта космогоническая гипотеза Канта - Лапласа просу­ществовала почти 100 лет.

В XX в. диалектические идеи проникают в геологию и биологию. На смену теории катастрофизма, предложенной французским естествоиспытателем Ж. Кювье (1768-1832), пришла идея геологического эволюционизма английского ес­тествоиспытателя Ч. Лайеля (1797-1875). В теории катастро­физма утверждалось, что отдельные периоды в истории Зем­ли заканчиваются мировыми катастрофами, в результате ко­торых старые виды растений и животных погибают и на смену им рождаются новые, ранее не существовавшие. Лайель же доказал, что для объяснения изменений, происшедших в тече­ние геологической истории, нет необходимости прибегать к представлениям о катастрофах, а достаточно допустить дли­тельный срок существования Земли.

В области биологии эволюционные идеи высказывал французский естествоиспытатель Ж. Б. Ламарк (1744-1829) в «Философии зоологии» и Ч. Р. Дарвин (1809-1882), создав­ший знаменитую работу «Происхождение видов путем есте­ственного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» (1859). Согласно теории Дарвина, виды животных, растений с их целесообразной организацией воз­никли в результате отбора и накопления качеств, полезных для организмов в их борьбе за существование в данных усло­виях. Г. Менделем (1822-1884) в работе «Опыты над расти­тельными гибридами», объединившей биологический и мате­матический анализ, было дано достаточно адекватное объяс­нение изменчивости и наследственности свойств организмов, что положило начало генетике. Им было выделено важнейшее свойство генов - дискретность, сформулирован принцип не­зависимости комбинирования генов при скрещивании. Но до 1900 г. работа Менделя оставалась неизвестной научной обще­ственности.

В 30-х г. XX в. ботаником М. Я. Шлейденом (1804-1881) и биологом Т. Шванном (1810-1882) была создана клеточная теория строения растений и живых организмов.

Вплотную подходит к открытию закона сохранения и пре­вращения энергии немецкий врач Ю. Р. Майер (1814-1878), который показал, что химическая, тепловая и механическая энергии могут превращаться друг в друга и являются равно­ценными. Английский исследователь Д. П. Джоуль (1818-1889) экспериментально продемонстрировал, что при затрате механической силы получается эквивалентное количество теплоты. Датский инженер Л. А. Кольдинг (1815-1888) опыт­ным путем установил отношение между работой и теплотой, физик Г. Гельмгольц (1821-1894) доказал на основе этого за­кона невозможность вечного двигателя.

Среди открытий в химии важнейшее место занимает от­крытие периодического закона химических элементов выда­ющимся ученым химиком Д. И. Менделеевым (1834-1907).

Эволюционные идеи, нашедшие отражение в биологии, геологии подрывали механическую картину мира. Этому способствовали и исследования в области физики: открытие Ш. Кулоном (1736-1806) закона притяжения электрических зарядов с противоположными знаками, введение английским химиком и физиком М. Фарадеем (1791-1867) понятия элек­тромагнитного поля, создание английским ученым Дж. Макс­веллом (1831-1879) математической теории электромагнит­ного поля. Это привело к созданию электромагнитной карти­ны мира.

В этот же период начинают развиваться и социально-гума­нитарные науки. Так например создаётся экономическая теория, на основе которой несколько позднее Г. Зиммель (1858-1918) формулирует философию денег, изложенную в одноименной работе. Возникновение социально-гуманитарных наук завершило формирование науки как системы дис­циплин, охватывающих все основные сферы мироздания: природу, общество и человеческий дух. Наука приобрела при­вычные для нас черты универсальности, специализации и междисциплинарных связей. Экспансия науки на все новые предметные области, расширяющееся технологическое и со­циально-регулятивное применение научных знаний, сопро­вождались изменением институционального статуса науки. Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов.

 

Неклассическая наука

 

В конце ХIХ - начале XX в. считалось, что научная карти­на мира практически построена, и если и предстоит какая-либо работа исследователям, то это уточнение некоторых де­талей. Но вдруг последовал целый ряд открытий, которые ни­как в нее не вписывались.

В 1896 г. французский физик А. Беккерель (1852-1908) от­крыл явление самопроизвольного излучения урановой соли, природа которого не была понята. В поисках элементов, испускающих подобные «беккерелевы лучи», Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934) в 1898 г. открывают полоний и радий, а само явление называют радиоактивностью. В 1897 г. английский физик Дж. Томсон (1856-1940) открыва­ет составную часть атома - электрон, создает первую, но очень недолго просуществовавшую модель атома. В 1900 г. немецкий физик М. Планк (1858-1947) предложил новый (совершенно не отвечающий классическим представлениям) подход: рассматривать энергию электромагнитного излучения величину дискретную, которая может передаваться только от­дельными, хотя и очень небольшими, порциями - кванта­ми. На основе этой гениальной догадки ученый не только по­лучил уравнение теплового излучения, но она легла в основу квантовой теории.

Английский физик Э. Резерфорд (1871-1937) эксперимен­тально устанавливает, что атомы имеют ядро, в котором сосре­доточена вся их масса, а в 1911 г. создает планетарную модель строения атома, согласно которой электроны движутся вокруг неподвижного ядра и в соответствии с законами классической электродинамики непрерывно излучают электромагнитную энергию. Но ему не удается объяснить, почему электроны, двигаясь вокруг ядра по кольцевым орбитам и непрерывно испытывая ускорение, следовательно, излучая все время ки­нетическую энергию, не приближаются к ядру и не падают на его поверхность.

Датский физик Нильс Бор (1885-1962), исходя из модели Резерфорда и модифицируя ее, введя постулаты (постулаты Бора), утверждающие, что в атомах имеются стационарные орбиты, при движении по которым электроны не излучают энергии, ее излучение происходит только в тех случаях, ког­да электроны переходят с одной стационарной орбиты на дру­гую, при этом происходит изменение энергии атома, создал квантовую модель атома. Она получила название модели Ре­зерфорда-Бора. Это была последняя наглядная модель атома.

В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1925 г. швейцарский физик-теоретик В. Пау­ли (1900-1958) сформулировал принцип запрета: ни в атоме, ни в молекуле не может быть двух электронов, находящихся в одинаковом состоянии.

В 1926 г. австрийский физик-теоретик Э. Шредингер (1887-1961) вывел основное уравнение волновой механики, а в 1927 г. немецкий физик В. [ейзенберг (1901-1976) - прин­цип неопределенности, утверждавший: значения координат и импульсов микрочастиц не могут быть названы одновремен­но и с высокой степенью точности.

В 1929 г. английский физик П. Дирак (1902-1984) заложил основы квантовой электродинамики и квантовой теории гра­витации, разработал релятивистскую теорию движения элек­трона, на основе которой предсказал (1931) существование позитрона - первой античастицы. Античастицами назвали частицы, подобные своему двойнику, но отличающиеся от него электрическим зарядом, магнитным моментом и др. В 1932 г. американский физик К. Андерсон (р. 1905) открыл по­зитрон в космических лучах.

В 1934 г. французские физики Ирен (1897-1956) и Фриде-рикЖолио-Кюри (1900-1958) открыли искусственную радио­активность, а в 1932 г. английский физик Дж. Чедвик (1891-1974) - нейтрон. Создание ускорителей заряженных частиц способствовало развитию ядерной физики, была выявлена не­элементарность элементарных частиц. Но поистине революци­онный переворот в физической картине мира совершил вели­кий физик-теоретик А. Эйнштейн (1879-1955), создавший спе­циальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Нью­тона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Вре­мя - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и меж­ду собой. Тем самым задачей теории относительности стано­вится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разра­ботке своей теории, принял в качестве исходных два положения; скорость света в вакууме неизменна и одинакова во всех сис­темах, движущихся прямолинейно и равномерно друг относи­тельно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Кроме того, он построил математическую теорию броунов­ского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921 г. ему была присуждена Но­белевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792-1856).

Говоря об открытии специальной теории относительности, нельзя не вспомнить нидерландского физика А. Лоренца (1853-1928), который в 1892 г. вывел уравнение (получившее название «преобразования Лоренца»), дающее возможность установить, что при переходе от одной инерциальной систе­ме к другой могут изменяться значения времени и размеры движущегося тела в направлении скорости движения. А круп­нейший французский математик и физик Анри Пуанкаре (1854-1912), который и ввел название «преобразование Лорен­ца», первым начал пользоваться термином «принцип относи­тельности», независимо от Эйнштейна развил математическую сторону этого принципа и практически одновременно с ним показал неразрывную связь между энергией и массой.

Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в не­классической введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий. Ма­тематизация ведет к повышению уровня абстракции теоретичес­кого знания, что влечет за собой потерю наглядности.

Переход от классической науки к неклассической характе­ризует та революционная ситуация, которая заключается во вхождении субъекта познания в «тело» знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность «в чистом виде», как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операци­онных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, постольку порождается специфи­ческий объект науки, за пределами которого нет смысла ис­кать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом,

Так как исследователь фиксирует только конкретные ре­зультаты взаимодействия объекта с прибором, то это по­рождает некоторый «разброс» в конечных результатах ис­следования. Отсюда вытекает правомерность и равноправ­ность различных видов описания объекта, построение его теоретических конструктов.

Научный факт перестал быть проверяющим. Теперь он ре­ализуется в пакете с иными внутритеоретическими способа­ми апробации знаний: принцип соответствия, выявление внутреннего и когерентного совершенства теории. Факт сви­детельствует, что теоретическое предположение оправдано для определенных условий и может быть реализовано в некоторых ситуациях. Принцип экспериментальной проверяемости на­деляется чертами фундаментальности, т. е. имеет место не «интуитивная очевидность», а «уместная адаптированность».

Концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающе­го воздействия якобы для «чистоты рассмотрения», призна­ние зависимости определенности свойств предмета от дина­мичности и комплексности его функционирования в позна­вательной ситуации, динамизация представлений о сущности объекта - переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы. Это ориенти­рует исследователя на изучение объекта как средоточия ком­плексных обратных связей, возникающих как результирую­щая действий различных агентов и контрагентов.

На основе достижений физики развивается химия, особен­но в области строения вещества. Развитие квантовой механи­ки позволило установить природу химической связи, под пос­ледней понимается взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Создаются такие хи­мические дисциплины, как физикохимия, стереохимия, хи­мия комплексных соединений, начинается разработка мето­дов органического синтеза.

В области биологии русским физиологом растений и микробиологом Д. И. Ивановским (1864-1920) был открыт вирус и положено начало вирусологии. Получает дальнейшее развитие генетика, в основе которой лежат законы Менделя и хромосомная теория наследственности американского биолога Т. Ханта (1866-1945). Хромосомы - структурные элементы ядра клетки, содержащие дезоксирибонуклеиновую кислоту (ДНК), которая является носителем наслед­ственной информации организма. При делении ДНК точно воспроизводится, обеспечивая передачу наследственных признаков от поколения к поколению. Американский био­химик Дж. Уотсон (р. 1928) и английский биофизик Ф. Крик (р. 1916) в 1953 г. создали модель структуры ДНК, что положи­ло начало молекулярной генетике. Датским биологом В. Йогансоном (1857-1927) было введено понятие «ген» - единица наследственного материала, отвечающая за передачу не­которого наследуемого признака.

Важнейшим событием развития генетики было открытие мутаций - внезапно возникающих изменений в наследственной системе организмов. Хотя явление мутаций было известно уже давно: в 1925 г. отечественный микробиолог Г.А. Натсон (1867-1940) установил действие радиоизлучения на наследственную изменчивость у грибов, в 1927 г. американский генетик Г Д. Меллер (1890-1967) обнаружил мутагенное действие рентгеновских лучей на дрозофил. Систематическое изучение мутаций было предпринято голландским ученым Хугоде Фризом (1842-1935), установившим, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов или под воз­действием некоторых химических веществ.

В результате развития генетики в этот период было выяс­нено, что изменчивость растительного или животного орга­низма может быть достигнуто двумя способами: либо непос­редственным воздействием внешней среды без изменения на­следственного аппарата организма, либо стимулированием мутаций, приводящих к изменениям наследственного аппара­та (генов, хромосом).

Не менее значительные достижения были отмечены в об­ласти астрономии. Напомним, что под Вселенной (Метага­лактикой) понимается доступная наблюдению и исследова­нию часть мира. Здесь существуют большие скопления (100- 200 млрд.) звезд - галактики, в одну из которых - Млечный Путь - входит Солнечная система. Наша Галактика состоит из 150 млрд. звезд (светящихся плазменных шаров), среди ко­торых Солнце, галактические туманности, космические лучи, магнитные поля, излучения. Солнечная система находится да­леко от ядра Галактики, на ее периферии, на расстоянии око­ло 30 световых лет. Возраст Солнечной системы около 5 млрд. лет. На основании «эффекта Доплера» (австрийский физик и астроном) было установлено, что Вселенная расширяется с очень высокой скоростью.

В 1922 г. математик и геофизик А. А. Фрид­ман (1888-1925) нашел решение уравнений общей теории от­носительности для замкнутой нестационарной расширяю­щейся Вселенной, ставшее математическим фундаментом большинства современных космогонических теорий.

Астрономы и астрофизики пришли к выводу, что Вселен­ная находится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном из водорода и гелия, под действием сил гравитации различаются по «возрасту». Причем образование новых звезд происходит и сейчас.

Сжимаясь под действием гравитационных сил, звезда на­гревается, внутри нее растет давление. При достижении опре­деленной критической температуры начинается термоядерная реакция, сопровождающаяся выделением огромного количе­ства тепла. На следующей стадии под действием гравитаци­онных сил наступает момент равновесия. В этом состоянии звезда может существовать довольно долго. Так, например, Солнце будет находиться в этом состоянии 13 млрд лет, око­ло 5 из них уже прошло. Но потом наступает момент, когда во­дород, находящийся в центре звезды, где происходит термо­ядерная реакция, будет израсходован. Температура внутри звезды будет уменьшаться, будет снижаться давление и иссяк­нут возможности сопротивляться гравитации. Ядро звезды, состоящее теперь уже только из гелия, начинает сжиматься, образуя плотную, горячую область. Теперь термоядерная ре­акция будет протекать на периферии звезды, где еще сохра­нился водород. В это время размер звезды и ее светимость уве­личиваются. В результате она превращается в красного гиган­та. Температура гелиевого ядра возрастает, и начинается новая ядерная реакция превращения гелия в углерод.

В зависимости массы звезды от массы Солнца после всего этого цикла она превращается либо в белого карлика - за­ключительный этап эволюции звезд, либо наступает гравита­ционный коллапс - вспышка сверхновой звезды, либо образуется черная дыра - сфера, из которой не могут выйти ни частицы, ни какое-либо излучение ввиду того, что очень ве­лико поле тяготения внутри нее.

В 1963 г. открыты квазары - астрономические тела, нахо­дящиеся вне пределов Галактики. В 1965 г. американские ас­трономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнару­жили фоновое радиоизлучение. Как метко назвал его извест­ный астроном и астрофизик И. С. Шкловский (1916-1985) - реликтовое излучение, не возникающее во Вселенной в насто­ящее время. Расширение Вселенной и реликтовое излучение являются вполне убедительными доводами в пользу стандарт­ной модели происхождения Вселенной, или теории «большо­го взрыва». В 1967 г. были открыты пульсары - космические тела, являющиеся источниками радиоизлучения. В 1903 г. ученным в работе «Исследование мировых пространств реактивные приборами» заложены начала теории космических полетов. В ней сформулированы основные принципы баллистики ракет, предложена схема жидкостного реактивного двигателя, а также принцип конструирования ракет - идеи, которые несколько позднее были востребованы и творчески освоены последователями Циолковского. Созда­ется наука, нацеленная на изучение и освоение космическо­го пространства - космонавтика. Ознаменовался этот пери­од развития науки созданием кибернетики - науки об управ­лении, связи и переработке информации, теории систем. Интенсивное развитие промышленного производства, косми­ческих исследований стимулирует дальнейшее совершенство­вание технических наук.

Характерное для классического этапа стремление к абсолю­тизации методов естествознания, выразившееся в попытках при­менения их в социально-гуманитарном познании, все больше и больше выявляло свою ограниченность и односторонность. На­метилась тенденция формирования новой исследовательской парадигмы, в основании которой лежит представление об осо­бом статусе социально-гуманитарных наук.

Как реакция на кризис механистического естествознания и как оппозиция классическому рационализму в конце XX в. возникает направление, представленное В. Дильтеем, Ф. Ниц­ше, Г. Зиммелем, А. Бергсоном, О. Шпенглером и др., - «фи­лософия жизни». Здесь жизнь понимается как первичная ре­альность, целостный органический процесс, для познания которой неприемлемы методы научного познания, а возмож­ны лишь внерациональные способы - интуиция, понимание, вживание, вчувствование и др.

Представители баденской школы неокантианства В. Виндельбанд (1848-1915) и Г. Риккерт (1863-1936) считали, что «науки о духе» и естественные науки прежде всего различают­ся по методу. Первые (идеографические науки) описывают неповторимые, индивидуальные события, процессы, ситуа­ции; вторые (номотетические), абстрагируясь от несуществен­ного, индивидуального, выявляют общее, регулярное, законо­мерное в изучаемых явлениях.

Испытавший на себе сильное влияние В. Виндельбанда и Г. Риккерта немецкий социолог, историк, экономист Макс Вебер (1864-1920) не разделяет резко естественные и соци­альные науки, а подчеркивает их единство и некоторые общие черты. Существенная среди них та, что они требуют «ясных понятий», знания законов и принципов мышления, край­не необходимых в любых науках. Социология вообще для него наука «номотетическая», строящая свою систему по­нятий на тех же основаниях, что и естественные науки - для установления общих законов социальной жизни, но с учетом ее своеобразия.

Предметом социального познания для Вебера является «культурно-значимая индивидуальная действительность». Социальные науки стремятся понять ее генетически, конкрет­но-исторически, не только какова она сегодня, но и почему она сложилась такой, а не иной. В этих науках выявляются закономерно повторяемые причинные связи, но с акцентом на индивидуальное, единичное, культурно-значимое. В них преобладает качественный аспект исследования над количественным, устанавливаются вероятностные законы, исходя из которых объясняются индивидуальные события. Цель соци­альных наук - познание жизненных явлений в их культурном значении. Система ценностей ученого имеет регулятивный характер, определяя выбор им предмета исследования, приме­няемых методов, способов образования понятий.

Вебер отдает предпочтение причинному объяснению по сравнению с законом. Для него знание законов не цель, а средство исследования, которое облегчает сведение культур­ных явлений к их конкретным причинам, поэтому законы применимы настолько, насколько они способствуют позна­нию индивидуальных связей. Особое значение для него имеет понимание как своеобразный способ постижения социальных явлений и процессов. Понимание отличается от объяснения в естественных науках, основным содержанием которого яв­ляется подведение единичного под всеобщее. Но результат понимания не есть окончательный результат исследования, это лишь высокой степени вероятности гипотеза, которая для того, чтобы стать научным положением, должна быть верифи­цирована объективными научными методами.

В качестве своеобразного инструмента познания и как критерий зрелости науки Вебер рассматривает овладение иде­альным типом. Идеальный тип - это рациональная теорети­ческая схема, которая не выводится из эмпирической реаль­ности непосредственно, а мысленно конструируется, чтобы облегчить объяснение «необозримого многообразия» соци­альных явлений. Мыслитель разграничивает социологичес­кий и исторический идеальные типы. С помощью первых уче­ный «ищет общие правила событий», с помощью вторых - стремится к каузальному анализу индивидуальных, важных в культурном отношении действий, пытается найти генетичес­кие связи. Вебер выступает за строгую объективность в социальном познании, так как вносить личные мотивы в проводи­мое исследование противоречит сущности науки. В этой связи можно вскрыть противоречие: с одной стороны, по Веберу, ученый, политик не может не учитывать свои субъективные интересы и пристрастия, с другой стороны, их надо полнос­тью отвергать для чистоты исследования.

Начиная с Вебера намечается тенденция на сближение ес­тественных и гуманитарных наук, что является характерной чертой постнеклассического развития науки.

 

Постнеклассическая наука

 

Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли чело­века в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирова­ние новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон и т. д. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов, а также их синтеза, т. е. конструирование новых гене­тически модифицированных организмов. Разработан принци­пиально новый метод, приведший к бурному развитию микро­биологии - клонирование.

Внесение эволюционных идей в область химических ис­следований привело к формированию нового научного на­правления - эволюционной химии. Так, на основе ее откры­тий, в частности разработки концепции саморазвития откры­тых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхожде­ния от низших химических систем к высшим.

Наметилось еще большее усиление математизации есте­ствознания, что повлекло увеличение уровня его абстрактнос­ти и сложности. Так, например, развитие абстрактных методов в исследованиях физической реальности приводит к созданию, с одной стороны, высокоэффективных теорий, таких как элек­трослабая теория Салама-Вайнберга, квантовая хромодинамика, «теория Великого Объединения», суперсимметричные теории, а с другой - к так называемому «кризису» физики элементарных частиц. Так, американский физик М. Гутцвиллер в 1994 г. писал: «Несмотря на все обещания, физика эле­ментарных частиц превратилась в кошмар, несмотря на ряд глубоких интуитивных прозрений, которые мы эксплуатирова­ли некоторое время. Неабелевы поля известны 40 лет, кварки наблюдались 25 лет назад, а гармоний открыт 20 лет назад. Но все чудесные идеи привели к моделям, которые зависят от 16 открытых параметров... Мы даже не можем установить прямые соответствия с массами элементарных частиц, поскольку необ­ходимая для этого математика слишком сложна даже для современных компьютеров... Но даже когда я пытаюсь читать неко­торые современные научные статьи или слушаю доклады некоторых своих коллег, меня не оставляет следующий вопрос: имеют ли они контакт с реальностью? Разрешите мне в каче­стве примера привести антиферромагнетизм, который снова популярен после открытия сверхпроводящих медных окислов. Сверхизощренные модели антиферромагнетизма были предло­жены и разработаны чрезвычайно тщательно людьми, которые ни разу не слышали, да и слышать не хотят, о гематите, или о том, что, как каждый знает, называется ржавым гвоздем»[10].

Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промыш­ленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.

Прогресс в 80 - 90-х гг. XX в. развития вычислительной техники вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе ре­шения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач. Так, на основе теории нечетких множеств создаются нечеткие компьютеры, способ­ные решать подобного рода задачи. А внесение человеческо­го фактора в создание баз данных привело к появлению высо­коэффективных экспертных систем, которые составили осно­ву систем искусственного интеллекта.

Поскольку объектом исследования все чаще становятся системы, экспериментирование с которыми невозможно, то важнейшим инструментом научно-исследовательской дея­тельности выступает математическое моделирование. Его суть в том, что исходный объект изучения заменяется его матема­тической моделью, экспериментирование с которой возмож­но при помощи программ, разработанных для ЭВМ. В мате­матическом моделировании видятся большие эвристические возможности, так как «математика, точнее математическое моделирование нелинейных систем, начинает нащупывать извне тот класс объектов, для которых существуют мостики между мертвой и живой природой, между самодостраивани­ем нелинейноэволюционирующих структур и высшими про­явлениями творческой интуиции человека»[11].

На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника. Электроника - наука о взаимодействии элект­ронов с электромагнитными полями и о методах создания электронных приборов и устройств, используемых для передачи информации. И если в начале XX в. на ее основе было возможно создание электронных ламп, то с 50-х гг. развивает­ся твердотельная электроника (прежде всего полупроводнико­вая), а с 60-х гг. - микроэлектроника на основе интегральных схем. Развитие последней идет в направлении уменьшения раз­меров, содержащихся в интегральной схеме элементов до мил­лиардной доли метра - нанометра (нм), с целью приме­нения при создании космических аппаратов и компьютерной техники.

Все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам чело­век - так называемые «человекоразмерные комплексы»; медикобиологические, экологические, биотехнологические объекты, системы «человек-машина», которые включают в себя информационные системы и системы искусственного интеллекта и т. д. С такими системами осложнено, а иногда и вообще невозможно экспериментирование. Изучение их немыслимо без определения границ возможного вмешатель­ства человека в объект, что связано с решением ряда этичес­ких проблем.

Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний - стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов. Концепция универсального эволюционизма базируется на определенной совокупности знаний, полученных в рамках конкретных научных дисциплин (биологии, геологии и т. д.) и вместе с тем включает в свой состав ряд философско-мировоззренческих установок. Часто универсальный, или гло­бальный, эволюционизм понимают как принцип, обеспечи­вающий экстраполяцию эволюционных идей на все сферы действительности и рассмотрение неживой, живой и социальной материи как единого универсального эволюционного процесса.

Системный подход внес новое содержание в концепцию эволюционизма, создав возможность рассмотрения систем как самоорганизующихся, носящих открытый характер. Как отмечал академик Н. Н. Моисеев, все происходящее в мире можно представить как отбор и существуют два типа механиз­мов, регулирующих его:

1) адаптационные, под действием которых система не при­обретает принципиально новых свойств;

2) бифуркационные, связанные с радикальной перестрой­кой системы.

Моисеев предложил принцип экономии энтропии, даю­щий «преимущества» сложным системам перед простыми. Эволюция может быть представлена как переход от одного типа самоорганизующейся системы к другой, более сложной. Идея принципа универсального эволюционизма основана на трех важнейших концептуальных направлениях в науке кон­ца XX в.:

1) теории нестационарной Вселенной;

2) синергетики;

3) теории биологической эволюции и развитой на ее осно­ве концепции биосферы и ноосферы.

Модель расширяющейся Вселенной, о которой подробно было рассказано выше, существенно изменила представления о мире, включив в научную картину мира идею космической эволюции. Теория расширяющейся Вселенной испытала трудности при попытке объяснить этапы космической эволю­ции от первовзрыва до мировой секунды после него. Ответы на эти вопросы даны в теории раздувающейся Вселенной, воз­никшей на стыке космологии и физики элементарных частиц.

В основу теории положена идея «инфляционной фазы» - стадии ускоренного расширения. После колоссального расши­рения в течение невероятно малого отрезка времени установи­лась фаза с нарушенной симметрией, что привело к изменению состояния вакуума и рождению огромного числа частиц. Несимметричность Вселенной выражается в преобладании вещества над антивеществом и обосновывается «великим объединением» теории элементарных частиц с моделью раздувающейся вселенной. На этой основе удалось описать слабые, сильные и электромагнитные взаимодействия при высоких энергиях, а также достичь прогресса в теории сверхплотного вещества. Согласно последней, возникла возможность обнаружить факт, состоящий в том, что при изменении температуры в сверхплотном веществе происходит ряд фазовых переходов, во время которых меняются свойства вещества и свойства элементарных частиц, составляющих это вещество. Подобного рода фазовые переходы должны были происходить при охлаждении расши­ряющейся Вселенной вскоре после «Большого взрыва». Таким образом, устанавливается взаимосвязь между эволюцией Все­ленной и процессом образования элементарных частиц, что дает возможность утверждать - Вселенная может представлять уникальную основу для проверки современных теорий элемен­тарных частиц и их взаимодействий[12].

Следствием теории раздувающейся Вселенной является положение о существовании множества эволюционно разви­вающихся вселенных, среди которых, возможно, только наша оказалась способной породить такое многообразие форм организации материи. А возникновение жизни на Земле обо­сновывается на основе антропного принципа, устанавливаю­щего связь существования человека (как наблюдателя) с фи­зическими параметрами Вселенной и Солнечной системы, а также с универсальными константами взаимодействия и мас­сами элементарных частиц. Данные космологии, полученные в последнее время, дают возможность предположить, что по­тенциальные возможности возникновения жизни и челове­ческого разума были заложены уже в начальных стадиях раз­вития Метагалактики, когда формировались численные значения мировых констант, определившие характер дальнейших эволюционных изменений.

Вторым концептуальным положением, лежащим в основе принципа универсального эволюционизма, явилась теория самоорганизации - синергетика -(об истории ее возникновения и особенностях см. гл. II, часть 6). Неоценим вклад в развитие этой науки И. Пригожина, который на основе своих открытий в об­ласти неравновесной термодинамики показал, что в неравновес­ных открытых системах возможны эффекты, приводящие не к возрастанию энтропии и стремлению термодинамических сис­тем к состоянию равновесного хаоса, а к «самопроизвольному» возникновению упорядоченных структур, к рождению порядка из хаоса. Синергетика изучает когерентное, согласованное со­стояние процессов самоорганизации в сложных системах раз­личной природы. Для того, чтобы было возможно применение синергетики, изучаемая система должна быть открытой и нели­нейной, состоять из множества элементов и подсистем (элек­тронов, атомов, молекул, клеток, нейронов, органов, сложных организмов, социальных групп и т. д.), взаимодействие между которыми может быть подвержено лишь малым флуктуациям, незначительным случайным изменениям, и находиться в состо­янии нестабильности, т. е. - в неравновесном состоянии.

Синергетика использует математические модели для опи­сания нелинейных процессов, которые могут быть процесса­ми самоорганизации в изучении лазера или самоподдержива­ющимися и саморазвивающимися структурами в плазме. Си­нергетика устанавливает, какие процессы самоорганизации происходят в природе и обществе, какого типа нелинейные законы управляют этими процессами и при каких условиях, выясняет, на каких стадиях эволюции хаос может играть по­зитивную роль, а когда он нежелателен и деструктивен.

Однако применение синергетики в исследовании соци­альных процессов ограничено в некоторых отношениях:

1. Удовлетворительно поняты, с точки зрения синергети­ки, могут быть только массовые процессы. Поведение личности, мотивы ее деятельности, предпочтения едва ли могут быть объяснены с ее помощью, так как она имеет дело с макросоциальными процессами и общи­ми тенденциями развития общества. Она дает картину макроскопических, социоэкономических событий, где суммированы личностные решения и акты выбора ин­дивидов. Индивид же, как таковой, синергетикой не изучается.

2. Синергетика не учитывает роль сознательного фактора духовной сферы, так как не рассматривает возможность человека прямо и сознательно противодействовать мак­ротенденциям самоорганизации, которые присущи со­циальным сообществам.

3. При переходе на более высокие уровни организации возрастает количество факторов, которые участвуют в детерминации изучаемого социального события, в то время как синергетика применима к исследованию та­ких процессов, которые детерминированы небольшим количеством фактов[13].

По-новому на этапе становления постнеклассической на­уки зазвучали идеи В. И. Вернадского о биосфере и ноосфере, высказанные им еще в 20-х годах XX в., рассматриваемые ныне как естественнонаучное обоснование принципа универ­сального эволюционизма.

Вернадский утверждает, что закономерным этапом доста­точно длительной эволюции развития материи является биосфера - целостная система, которая обладает высокой сте­пенью самоорганизации и способностью к эволюции. Это особое геологическое тело, структура и функции которого оп­ределяются специфическими особенностями Земли и космо­са. Биосфера является самоорганизующейся системой, чье функционирование обусловлено «существованием в ней жи­вого вещества - совокупности живых организмов, в ней живущих»[14]. Биосфера - живая динамическая система, находящаяся в развитии, осуществляемом под воздействием внутрен­них структурных компонентов ее, а также под влиянием все возрастающих антропогенных факторов. Благодаря последним растет могущество человека, в результате деятельности кото­рого происходят изменения структуры биосферы. Под влия­нием научной мысли человека и человеческого труда она пе­реходит в новое состояние - ноосферу. В концепции Вернад­ского показано, что жизнь представляет собой целостный эволюционный процесс (физический, геохимический, биоло­гический), включенный в космическую эволюцию.

Таким образом, в постнеклассической науке утверждается парадигма целостности, согласно которой мироздание, био­сфера, ноосфера, общество, человек и т. д. представляют со­бой единую целостность. И проявлением этой целостности является то, что человек находится не вне изучаемого объек­та, а внутри него, он лишь часть, познающего целого. И, как следствие такого подхода, мы наблюдаем сближение есте­ственных и общественных наук, при котором идеи и принци­пы современного естествознания все шире внедряются в гума­нитарные науки, причем имеет место и обратный процесс. Так, освоение наукой саморазвивающихся «человекоразмерных» систем стирает ранее непреодолимые границы между методологиями естествознания и социального познания. И центром этого слияния, сближения является человек.

Концепция открытой рациональности, развивающаяся в постнеклассической науке, выразилась, в частности, в том, что европейская наука конца XX - начала XX в. стала ори­ентироваться и на восточное мышление. Без этого, возможно, немыслима современная концепция природы. «Мы считаем, - пишут И. Пригожин и И. Стенгерс, - что находимся на пути к новому синтезу, новой концепции природы. Возможно, когда-нибудь нам удастся слить воедино западную традицию, придающую первостепенное значение экспериментированию и количественным формулировкам, и такую традицию, как китайская: с ее представлениями о спонтанно изменяющем­ся самоорганизующемся мире»[15].

Центральной идеей концепции глобального эволюциониз­ма является идея (принцип) коэволюции, т. е. сопряженного, взаимообусловленного изменения систем, или частей внутри целого. Возникшее в области биологии при изучении совме­стной эволюции различных биологических видов, их структур и уровней организации понятие коэволюции сегодня харак­теризует корреляцию эволюционных изменений как матери­альных, так и идеальных развивающихся систем. Представле­ние о коэволюционных процессах, пронизывающих все сфе­ры бытия - природу, общество, человека, культуру, науку, философию и т. д., - ставит задачу еще более тесного взаи­модействия естественнонаучного и гуманитарного знания для выявления механизмов этих процессов.

Идея синтеза знаний, создание общенаучной картины мира становится основополагающей на этапе постнеклассического развития науки. Одной из весьма удачных попы­ток создать современную общенаучную картину мира на ос­нове идей глобального эволюционизма является концепция Э. Янча, предложенная в его работе «Самоорганизующаяся Вселенная: научные и гуманистические следствия возника­ющей парадигмы эволюции». Автор показывает, что все уровни неживой и живой материи, а также явления социаль­ной жизни - нравственность, мораль, религия и т. д. - раз­виваются как диссипативные структуры. Поэтому эволюция представляется ему целостным процессом, составными час­тями которого являются физико-химический, биологичес­кий, социальный, экологический, социально-культурный процессы. На каждом уровне выявляются специфические его особенности.

Источником космической эволюции Э. Янч называет нару­шение симметрии, выражающееся в преобладании вещества над антивеществом, повлекшее за собой возникновение раз­личного рода сил - гравитационных, электромагнитных, сильных, слабых. На следующем этапе эволюции возникает жизнь - «тонкая сверхструктурированная физическая реаль­ность», усложнение которой приводит к коэволюции организ­мов и экосистем, в результате чего впоследствии происходит социальная эволюция, при которой возникает специфическое свойство, связанное с мыслительной деятельностью. Тем са­мым Э. Янч включает в самоорганизующуюся Вселенную чело­века, придав глобальной эволюции гуманистический смысл.

Становление постнеклассической науки не приводит к уничтожению методов и познавательных установок класси­ческого и неклассического исследования. Они будут продол­жать использоваться в соответствующих им познавательных ситуациях, постнеклассическая наука лишь четче определит область их применения.

 



Дата: 2019-02-25, просмотров: 234.