Ресинтез триглицеридов происходит в эпителиальных клетках двумя путями. Первый путь – β-моноглицеридный. Суть его состоит в том, что β-моноглицериды и жирные кислоты, проникающие в процессе всасывания в эпителиальные клетки кишечной стенки, задерживаются в гладком эндоплазматическом ретикулуме клеток. Здесь из жирных кислот образуется их активная форма – ацил-КоА и затем происходит ацилирование β-моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:
β-Моноглицерид + R—СО—S-KoA –> Диглицерид + HS-KoA ;
Диглицерид + R1—СО—S-KoA –> Триглицерид + HS-KoA.
Второй путь ресинтеза триглицеридов протекает в шероховатом эндоплазматическом ретикулуме эпителиальных клеток и включает следующие реакции:
1) образование активной формы жирной кислоты – ацил-КоА при участии ацил-КоА-синтетазы;
2) образование α-глицерофосфата при участии глицеролкиназы;
3) превращение α-глицерофосфата в фосфатидную кислоту при участии глицерофосфат-ацилтрансферазы;
4) превращение фосфатидной кислоты в диглицерид при участии фос-фатидат-фосфогидролазы;
5) ацилирование диглицерида с образованием триглицерида при участии диглицеридацилтрансферазы.
α-глицерофосфатный путь ресинтеза жиров (триглицеридов) приобретает значение, если в эпителиальные клетки слизистой оболочки тонкой кишки поступили преимущественно жирные кислоты. В случае, если в стенку кишки поступили жирные кислоты вместе с β-моноглицеридами, запускается β-моногли-церидный путь.
Ресинтезированные в эпителиальных клетках кишечника триглицериды и фосфолипиды, а также поступивший в эти клетки из полости кишечника холестерин соединяются с небольшим количеством белка и образуют относительно стабильные комплексные частицы – хиломикроны (ХМ). ХМ диффундируют в лимфатическую систему кишечника, а из нее – в грудной лимфатический проток. Затем из грудного лимфатического протока ХМ попадают в кровяное русло, т.е. с их помощью осуществляется транспорт экзогенных триглицеридов, холестерина и частично фосфолипидов из кишечника через лимфатическую систему в кровь. Известно, что печень и жировая ткань играют наиболее существенную роль в дальнейшей судьбе ХМ. Последние свободно диффундируют из плазмы крови в межклеточные пространства печени (синусоиды). ХМ не способны (из-за своих размеров) проникать в клетки жировой ткани. В связи с этим триглицериды ХМ подвергаются гидролизу на поверхности эндотелия капилляров жировой ткани при участии фермента липопротеидлипазы.
Липотропные вещества - витаминоподобные вещества холин, инозит, биотин и а/к метионин являются липотропными веществами - т. е. участвуют в обмене жиров, и их основная функция состоит в предупреждении ненормального или чрезмерного накопления жира в печени. Они увеличивают производство лецитина, который сохраняет холестерин более растворимым, очищает печень и увеличивает сопротивляемость заболеваниям.
3. Витамин В2. Химическая природа, распространение, участие в обменных процессах.
рибофлавин. ХС – в основе молекулы рибофлавина лежит гетероциклическое соединение – изоаллоксазин (сочетание бензольного, пиразинового и пиримидинового колец), к которому в положении 9 присоединен пятиатомный спирт рибитол. Рибофлавин хорошо растворим в воде, устойчив в кислых и легко разрушается в щелочных средах. Суточная потребность 1,7 мг. Источники: хлеб, злаковые, яйца, молоко, мясо, свежие овощи. Гиповитаминоз – остановка роста, выпадение волос, воспалительные процессы слизистой оболочки языка (глоссит) и губ, катаракта, общая мышечная слабость. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД, являющихся в свою очередь простетическими группами ферментов-флавопротеинов. Различают 2 типа химических реакций, катализируемых этими ферментами: 1) реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование исходного субстрата. К ферментам этой группы относят оксидазы L- и D-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза. 2) реакции которыу характеризуются переносом электронов и протонов не от исходного субстрата, а от восстановленных пиримидиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении.
4. Реакции на патологические составные части мочи (белок, глюкоза, кровь, ацетоновые тела). Методы экспресс-диагностики.
На белок:
· с сульфосалицил.к-той(выпад.хлопьеобраз.осадок)
· с ТХУ =//=
· с азотной кислотой (кольцо помутнения)
· кол-венное определение нефелометрическим методом – степень помутнения р-ра(при взаимод.с ТХУ) пропорциональна концентрации белка. показания на ФЭКе.
На глю:
На кровь:
На кетоновые тела:
Экспресс-методы:
Метод основан на р.Фелинга. На предмет.стекло щепотку смеси сернокислой меди и углеродистого натрия. На порошок 2 кап исследуемой мочи и слегка подогрев на спиртовке. Изменеие окраски: от голубого(отсутствие), до кирпично-красного (4%и более)
Основан на р.с нитропруссидом натрия. Поместить на полоску филтров.бумаги таблетку или щепотку реактив.порошка(сернокислый аммоний, углекислый натрий и нитропруссид натрия), +2 кап мочи. Через 2 мин окраску сравнить со шкалой. Цвет не меняется – отсутствие кет.тел. Наличие – цвет от розового до фиолетового.
БИЛЕТ № 24
1. Процессы образования конечных продуктов обмена простых белков. Основные источники аммиака. Роль глутамина в обезвреживании аммиака и синтезе ряда соединений.
Источники аммиака:
1)дезаминирование АК(в тканях и кишечнике)
2)дезаминирование аминов
3)дезаминирование азотистых оснований
Аммиак в крови – 12-65мкмоль/л(10-120мкг%), в моче – 35,7 – 71,4ммоль/сут(0,5-1,0г)
Аммиак исключительно токсичен.
Обезвреживание:
1)образование амидов(локально)
Гутамат + NH3,NH4+,АТФ, магний++, глутамин-синтетаза®глутамин +АДФ +Фн
Глутамин®почки( –аммиак, глутаминаза) Глутамат ®-аммиак®2аммоний+®аммониогенез
®альфа-КГ
®печень, синтез мочевины
®синтез пуринов, пиримидинов.
2)восстановительное аминирование
А. альфа-КГ (глутаматДГ, аммоний, 2Н, НАДФ)®глутамат, Н2О, НАДФН
Б. глутамат + ПВК (трансаминирование)Ûальфа-КГ +ала
3)образование аммонийных солей
4)синтез мочевины.
Аминокислота R-CH-NH2-COOH окисляется до NH3 (обезвреживается и превращается в мочевину, которая выводится с мочой) и R-C=O-COOH CO2 + R- COOH бета окисление до АцКоА ЦТК АТФ + Н2О + СО2
Дата: 2019-02-19, просмотров: 457.