Минеральные вещества крови. Распределение между плазмой и эритроцитами
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Натрий. В крови – 132-150 ммоль/л, в эритроцитах 17-20 ммоль/л. Источники: поваренная соль, овощи. Является основным внеклеточным элементом клеток, влияет на распределение воды в организме, поддержание нервно-мышечного тонуса, постоянства осмотического давления, участвует в работе буферной системы крови. Изменение содержания натрия приводит к изменению объема внеклеточной жидкости, влияя на кровообращение, функцию почек и НС, что требует неотложных мер.

Калий. В сыворотке крови 4-5,5 ммоль/л, в эритроцитах 115 ммоль/л. Внутриклеточный катион – 98%. Источник – абрикосы, банан, курага, овощи, фрукты, картошка. Участвует в обмене веществ, в мышечном сокращении, мышечном возбуждении. Калий участвует в процессах энергетического обмена, определяет состояние нервно-мышечной деятельности, поглощается тканями при анаболических процессах, необходим для синтеза ацетилхолина, высвобождается при распаде тканей и участвует в биосинтезе гликогена.

Кальций. Общее содержание: плазма –2,3-2,75 ммоль/л, ионизированный – 1,05-1,3 ммоль/л, в эритроцитах- следы. Источники: молочные продукты, бобовые, злаки, орехи. Принимает участие в процессах нервно-мышечной возбудимости (как антагонист ионов калия), мышечного сокращения, свертываемости крови, образует структурную основу костного скелета, влияет на проницаемость клеточной мембраны.

Фосфаты. Содержание: плазма-0,65-1,6, эрит.-следы. Источник – рыбные продукты. Необходим для построения скелета, образования макроэргических соединений, синтеза нуклеиновых кислот, сложных белков, фосфатидов, поддержания КОР. 80-85% фосфатов нах-ся в костной и хрящевой ткани, где участвуют в формировании скелета.

Железо. Содержание: в плазме – 0,02, в эритроцитах – 18,5, 9-31,0 мкмоль/л, у детей до 2х лет – 7-18 мкмоль/л. В организме выполняет ряд важных функций – транспортирует кислород (гемоглобин, миоглобин), электроны (цитохромы, железосеропротеины), входит в активный центр ряда ферментов (супероксиддисмутаз, гидролаз). Распределение железа в тканях: 65% - костный мозг, эритроциты (гемоглобин), 15% - различные ткани (ферменты, миоглобин), 20% - запасная форма (ферритин, гемосидерин), 0,1-0,2% - транспортная форма (трансферрин).

Сера. В плазме -2,7, в эритроците – 7,9. одержится в свежих фруктах, перце, капусте, хрене, рябее, морепродуктах. Входит в состав амк, витаминов, Ф, необх.для синтеза Б соедин.тк., в составе инсулина, формир.хрящ.тк..

БИЛЕТ № 9

  1. ДНК. Первичная, вторичная и третичная структура ДНК. Биологическая роль ДНК.

Нуклеиновые кислоты ДНК и РНК – сложные высокомолекулярные соединения, которые состоят из нескольких компонентов более простого строения. В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК рибозой. ДНК и РНК содержат фосфорную кислоту, а также по два пуриновых (аденин, гуанин) и пиримидиновых (цитозин, урацил, тимин) оснований. ДНК: Н3РО4, Дезоксирибоза, Аденин, Гуанин, Цитозин, Тимин. Структурной единицей нуклеиновой кислоты является нуклеотид. Они состоят из трех компонентов: азотистого основания, углевода и фосфорной кислоты. Первичная структура нуклеиновых кислот – это последовательное расположение нуклеотидов в полинуклеотидной цепи ДНК или РНК. Между нуклеотидами имеется 3’,5’-фосфодиэфирная связь. Вторичная структура нуклеиновых кислот –

 ДНК представляет собой двойную спираль (это биополимер) состоящий из двух антипараллельных цепочек, закрученных вокруг одной и той же оси. Цепочки соединяются водородными связями которые образуются между азотистыми основаниями. Цепочки имеют противоположную полярность, т.е. у одной цепочки направление 5’ к 3’, а у другой 3’ к 5’. Спираль ДНК закручивается вправо, общий виток 3,4нм, расстояние между цепочками 2нм. Основой структурной организации ДНК составляет принцип комплементарности – аденин соединяется с Тимином, цитозин с гуанином. Третичная структура – двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см в вытянутой форме ДНК укладывается в 5 нм. Суперспирализация ДНК может быть нарушена разрывом в одной из цепей или обеих цепях двойной спирали под действием ДНКазы.

Биологическая роль ДНК: 1) хранение и передача генетической информации о структуре белка. 2) способна к репликации (самоудваению). 3) способна к репарации (восстановление поврежденной структуры). 4) Участвует в транскрипции (в синтезе мРНК). ДНК находится в ядре, в митохондриях.

Функции ДНК:

1. ДНК является носителем генетической информации. Функция обеспечивается фактом существования генетического кода.

2. Воспроизведение и передача генетической информации в поколениях клеток и организмов. Функция обеспечивается процессом репликации.

3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Функция обеспечивается процессами транскрипции и трансляции

Дата: 2019-02-19, просмотров: 288.