В основе классификации (создана в 1908г.) лежит растворимость белков. По этому признаку выделяют:
I. гистоны и протамины, растворимые в солевых растворах. Они относятся к низкомолекулярным белкам (M<5 000 дальтон, Да). В своем составе эти белки содержат большое количество диаминомонокарбоновых кислот (аргинина и лизина). В водной среде они имеют «+» заряд, изоэлектрическая точка (ИЭТ) лежит в области pH 9-12 (щелочная среда).
Основные функции протаминов и гистонов:
1. структурная, т.е. они поддерживают пространственную организацию ДНК и входят в состав ДНП.
2. регуляторная - гистоны регулируют процесс транскрипции.
Протамины имеют меньшую молекулярную массу, чем гистоны; они содержат больше аргинина (до 85%). Происхождение протаминов: сальмин выделен из молок лососевых рыб, скумбрин – скумбрии.
II. Альбумины и глобулины. Это наиболее важные белки плазмы крови (составляют 60%). Содержание альбумина 35-50 г/л, глобулина 20-30 г/л. По форме молекулы это глобулярные белки.
Альбумины растворимы как в воде, так и в солевых растворах, имеют M 40-70 кД (килодальтон, т.е. тысяч дальтон). Особенностью АК-состава является повышенное содержание глутаминовой, аспарагиновой кислот, следовательно в водном растворе эти белки имеют «-» заряд. ИЭТ лежит в пределах pH 4,7 в кислой среде.
В организме альбумины выполняют следующие функции:
1. транспортная – переносят метаболиты, лекарственные вещества, ВЖК (высшие жирные к-ты), холестерины, гормоны, желчные пигменты, ионы Ca2+ и др.
2. поддержание онкотического давления, т.к. осмотическое давление крови на ~75-80% обеспечивается за счет альбуминов.
Глобулины плохо растворимы в воде, но хорошо в солевых растворах. Имеют большую M до 150 кД. Проявляют либо слабовыраженные кислотные, либо нейтральные свойства. ИЭТ лежит в пределах pH 6-7,3.
В норме содержание альбуминов и глобулинов лежит в определенной пропорции – альбумино-глобулиновый или белковый коэффициент: К=А/Г»1,5-2,3. Определение АГК имеет диагностическое значение, т.к. при патологиях оно меняется. Например, при инфекционных заболеваниях увеличивается содержание глобулина, АГК уменьшается; при патологии почек нарушается их фильтрационная способность, количество альбуминов уменьшается, следовательно, АГК также падает. Чтобы определить белковый коэффициент необходимо отнести содержание альбумина к содержанию глобулина.
III. Проламины и глютелины. Это основные растительные белки. Они не растворяются ни в водных растворах, ни в свободном этаноле, но растворяются в 65% растворе этанола. По АК-составу присутствует глутамин (до 25%), пролин (до 15%). В кукурузе содержится зеин, в ячмене – гордеин, в пшенице – глиадин.
IV. Протеиноиды (склеропротеины). Они не растворяются ни в воде, ни в солевых растворах. Это фибриллярные белки опорных тканей. Входят в состав сухожилий, костной, хрящевой тканей и др. К ним относятся: кератины – белки волос, ногтей; коллагены – белки соединительной ткани; эластины – белки, входящие в состав связок. Особенностью АК-состава является повышенное содержание аланина, глицина, пролина. Имеется оксипролин. Эти белки составляют 25-33% от всех белков в организме.
Характеристика сложных белков
Они имеют белковую и небелковую (простетическую) части. Белковую часть составляет
полипептид, построенный из АК-остатков. В состав небелковой части может входить: гем, металл, остаток фосфорной кислоты, углеводы, липиды и т.д.
Хромопротеины
Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидоксидаза, ксантиноксидаза), цитохромы (гемсодержащие белки) и т.д. Велика биологическая роль этих белков – участвуют в физиологических процессах: дыхание клетки, транспорте кислорода и углекислого газа, окислительно-восстановительных процессах.
Гемоглобин. Его белковая часть представлена глобином, небелковая – гемом. Это олигомерный белок, т.е. имеет четвертичную структуру, состоящую из 4 субъединиц.
a цепи построены из 141 АК-остатка.
b цепи из 146 АК-остатков [рис. 4-х субъединиц, в каждой нарисована точка - гем].
Каждая из субъединиц связана с гемом:
Основная функция гемоглобина – транспортная (кислород, углекислый газ). Также он представляет собой основную буферную систему крови (75% от всей буферной емкости крови).
Различают:
- HbO2 – оксигемоглобин (связан с молекулой O2);
- HbCO – карбоксигемоглобин;
- HbCO2 – карбгемоглобин;
- HbOH – метгемоглобин (образуется при соединении с нитросоединениями, не способен связывать кислород).
Типы гемоглобина. Всего известно более 100 типов, но их все делят на 2 группы:
1) Физиологические гемоглобины;
2) Патологические (аномальные).
К физиологическим гемоглобинам относятся:
- Hb P – примитивный гемоглобин, имеет место быть у 1-2 недельного эмбриона;
- Hb F – фетальный или гемоглобин плода, к моменту рождения составляет около 70% всего гемоглобина в крови;
- Hb A, Hb A2, Hb A3 – это гемоглобины взрослого организма. На Hb A приходится около 90-96%.
Физиологические типы гемоглобинов отличаются глобулиновой частью (АК-составом). Например Hb A содержит 2a и 2b субъединицы, а Hb F – 2a и 2g субъединицы.
К аномальным (возникающих при наследственных заболеваниях) гемоглобинам относятся:
- HbS – гемоглобин, сопутствующий серповидно-клеточной анемии. Отличается от нормального тем, что с N-конца в 6 положении b–цепи глутамин заменен на валин.
Миоглобин по сравнению с гемоглобином имеет третичную структуру, одну полипептидную цепь, один гем и может связывать одну молекулу кислорода. Гемоглобин и миоглобин функционируют вместе. Гемоглобин доставляет кислород из легких к тканям, а миоглобин перераспределяет его внутри клетки (доставляет к митохондриям).
Оба белка – гемопротеины, т.е. гемсодержащие белки.
Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
Три этапа аэробного распада углеводов: 1) гликолиз до ПВК, при этом образуется 8 АТФ 2) окислительное декарбоксилирование ПВК, при этом образуется 6 АТФ 3) АцКоА запускает ЦТК, в итоге образуется 24 АТФ, т.о. на одну молекулу глюкозы приходится 38 молекул АТФ.
Митохондриальная мембрана не проницаема для Н, он транспортируется через челночные механизмы – глицеролфосфатный челночный механизм, Маолат-аспартатная челночная система.
Гликоген распадается в печени и в мышцах,
1.глю → 2ПВК +2АТФ+НАДН (анаэробный процесс,10 р-ий)
2.2ПВК + 1/2О2 → СН3-С(О)-SКоА+2НАДН
3. СН3-С(О)-SКоА В ЦТК, либо +Н2О → СО2 + 4Н2
Челночные механизмы: существуют так называемые челночные механизмы, с помощью которых электроны, отщепляемые от НАДН при его окислении в цитоплазме, могут проникать внутрь митохондрий и поступать в дыхательную цепь.
1)малатаспартатный: под действием цитоплазмат. Малат-ДГ НАДН окисляется оксалацетатом, кот при этом вос-ся до малата. Малат проникает внутрь митохондрий. Здесь в матриксе митохондрии происходит обратная реакция под действием малат-ДГ и образованный в результате ее оксалацетат снова переходит с помощью механизма активного переноса через мембраны митохондрий в цитоплазму.
2)глицерофосфатный: с помощью фермента глицеро-ф-ДГ, коФ кот явл НАДН, продукт гликолиза диоксиацетон-ф восстанавливается в глицеро-ф. Глицерофосфат свободно проникает через мембраны митохондрий, захватив с собой электроны от НАДН, который превратился в НАД. Здесь под действием внутрнмитохондриальной глицеро-ф-ДГ, кот отличается от глицеро-ф-ДГ цитоплазмы, происходит обратная реакция превращения глицеро-ф в диоксиацетон-ф. Глицеро-ф-ДГ митохондрий в качестве кофермента использует не НАД+, а флавиновую группировку. Образовавшийся диоксиацетон-ф проникает через мембраны митохондрий обратно в цитоплазму, и цикл окисления цитоплазматической НАДН таким образом замыкается. Флавиновая глицеро-ф-ДГ а передает полученные в результате окисления глицеро-ф электроны на КоФ О дыхательной цепи. Т.о. в процессе их переноса на молекулярный кислород происходит не три, а два акта фосфорилирования. Глицерофосфатный челночный механизм является односторонним в том смысле, что он обеспечивает перенос электронов только внутрь митохондрий.
Дата: 2019-02-19, просмотров: 285.